Math 2B: Lesson Learning Outcomes

LESSONS 0: THE SIX MAJOR PROBLEMS OF LINEAR ALGEBRA

State the applied math modeling problem.

- Explain the Applied Math Modeling Process.
- Explain where matrices and vectors arise in this process.
- Explain why Jeff is head-over-heels in love with Applied Linear Algebra. In other words, explain why Jeff says that applied linear algebra is so powerful in post-1945 knowledge economy. Why is this class not call nonlinear algebra? How does the adjective "linear" relate to the development of computers.
- Explain where Applied Linear Algebra shows up in Jeff's Concept Map of Applied Math in Action.
\square State the matrix-vector multiplication problem (MVMP).
- Identify the known and unknown information in the MVMP.
- Specify the dimensions for all matrices in the MVMP.
- Identify the domain and codomain of the MVMP.
$\square \quad$ State the nonsingular linear-systems problem (NLSP).
- Identify the known and unknown information in the NLSP.
- Specify the dimensions for all matrices in the NLSP.
- Identify the domain and codomain of the NLSP.
$\square \quad$ State the general linear-systems problem (GLSP).
- Identify the known and unknown information in the GLSP.
- Specify the dimensions for all matrices in the GLSP.
- Identify the domain and codomain of the GLSP.
$\square \quad$ State the full-rank least-squares problem (FRLSP).
- Identify the known and unknown information in the FRLSP.
- Specify the dimensions for all matrices in the FRLSP.
- Identify the domain and codomain of the FRLSP.
$\square \quad$ State the standard eigenvalue problem (SEP).
- Identify the known and unknown information in the SEP.
- Specify the dimensions for all matrices in the SEP.
- Identify the domain and codomain of the SEP.

LESSONS 1: INTRODUCTION TO SET THEORY

$\square \quad$ Given sets A and B , prove $A \subseteq B$
\square Given sets A and B, prove A = B
\square Describe sets using either element enumeration or set builder notation
\square Identify Important Number Systems using proper notation

LESSONS 2: RELATIONS AND FUNCTIONS

\square Identify Domain Space, Domain, Codomain and Range of a given relation
\square Convert natural numbers into binary representations
\square Convert binary numbers into natural numbers
\square Properly use set theory definition of function
\square Apply the gray scale function for storing shades of gray in a computer

LESSONS 3: VECTORS AND MODELING

$\square \quad$ Use column vectors to create a vertex model of points in \mathbb{R}^{2}
\square Use column vectors to describe data from Hooke's law experiment
\square Use column vectors to model Ohm's law experiment
\square Apply Ohm's Law to describe relations between voltage and current in circuit.
$\square \quad$ Use column vectors to capture position data for mass-spring chain
\square Discretize a given function $y=f(x)$ to produce input vector $\overrightarrow{\boldsymbol{x}}$ and output vector $\overrightarrow{\boldsymbol{y}}$
\square Properly identify equality of vectors
\square Use row vectors appropriately

Math 2B: Lesson Learning Outcomes

LESSONS 4: VECTOR ARITHMETIC

\square Use scalar-vector multiplication and vector addition to model for Hooke's law
\square Use vector-vector addition to create the displacement vector for a mass-spring system with n masses and ($n+1$) springs where $\mathrm{n}=2,3,4$, 5
\square Properly apply Algebraic Properties of vector addition and scalar multiplication
\square Properly apply Algebraic Properties of vector transposes

LESSONS 5: INNER PRODUCTS AND VECTOR NORMS

\square Use inner product to calculate Riemann sums (NOT WINTER 2017)
\square Use inner products to calculate your final grade in Math 2B
\square Use inner products to calculate the voltage across a circuit element
\square Use inner products to write Kirchoff's current law for any node of an ideal circuit
$\square \quad$ Properly identify and apply Algebraic Properties inner products
\square Prove any of the algebraic properties of inner products
\square Prove the Pythagorean Theorem and the Law of Cosines
\square Prove the cosine formula for dot products
\square Properly apply Algebraic Properties of 2-norm of a vector
\square Prove the algebraic properties of the 2-norm of a vector
\square Properly identify and apply definition of Orthogonality between vectors

LESSONS 6: LINEAR COMBINATIONS, SPANS AND LINEAR INDEPENDENCE

$\square \quad$ Find the span of a given set of vectors
\square Identify linearly independent vectors
\square Identify linearly dependent vectors
$\square \quad$ Discuss properties of span of given set of vectors

LESSONS 7: MATRICES AND MODELING

\square Create the incidence matrix for a given undirected graph
\square Create incidence matrix for a given directed graph
$\square \quad$ Identify and use the 2D wireframe model for given polygon
$\square \quad$ Set up matrix model for a given mass-spring chain with n masses and ($n+1$) springs
\square Properly use the entry operator to refer to an entry of a matrix
\square Properly identify and apply matrix model for digital image
\square Identify dimensions of a given matrices
$\square \quad$ Properly use definition of equal matrices

LESSON 8: ANATOMY OF MATRICES

\square Discuss the properties of the matrix-vector multiplication problem in detail
\square Identify and apply colon notation to denote the columns of a matrix.
\square Identify and apply colon notation to denote the rows of a matrix.
\square Properly use colon notation for row and column partition of a matrix

LESSONS 9: OUTER PRODUCTS AND MATRIX ARITHMETIC

Identify the definition of the outer product
\square Calculate the outer product between two given vectors
\square Use outer products to calculate matrix units
\square Recognize the difference between an outer and inner product by identifying dimensions
\square Use outer products and matrix arithmetic to calculate any of the three elementary matrices

- Shear Matrices: $S_{i k}(c)$
- Dilation Matrices: $D_{j}(c)$
- Permutation (Transposition) Matrices: $P_{i k}$
\square Apply definitions of elementary matrices $S_{i k}(c), D_{j}(c), P_{i k}$ to do matrix arithmetic
\square Apply the Algebraic Properties of sum, difference and scalar multiple of a matrix
\square Properly identify and apply algebraic properties of transpose of a matrix

Math 2B: Lesson Learning Outcomes

LESSON 10: THE MATRIX-VECTOR MULTIPLICATION PROBLEM (MVMP)

Discuss the properties of the matrix-vector multiplication problem in detail

- What is given and what is unknown?
- How does this relate to functions (think domain and codomain)?
- How is this related to the square linear-systems problem?
- What does the matrix-vector multiplication problem have to do with linear combinations?
\square Identify and apply column-partition version of matrix-vector multiplication
\square Identify and apply the entry-by-entry version of matrix-vector multiplication
\square Use matrix-vector multiplication to analyze mass-spring chains
\square Use matrix-vector multiplication to calculate voltage drops across ideal circuit elements
\square Use matrix-vector multiplication to state KCL at all nodes of a circuit
\square Use matrix-vector multiplication to state Ohm's Law for all resistors in a circuit
\square Create Vandermonde matrix to sample a given nth degree polynomial

LESSON 11: MATRIX-MATRIX MULTIPLICATION

\square Determine if two matrices are conformable for matrix multiplication
\square Properly identify the dimensions of a matrix-matrix product
\square Identify the dimensions of left and right arguments of matrix-matrix multiplication
\square Identify left and right arguments of a matrix-matrix multiplication
\square Use column-partition version of matrix-matrix multiplication to multiply a matrix on the right
\square Use row-partition version of matrix-matrix multiplication to multiply a matrix on the left
\square Use entry-by-entry version of matrix-matrix multiplication to quickly calculate individual entries of a matrix-matrix product
\square Prove that all forms of matrix-matrix multiplication are equivalent.

- Prove matrix-matrix multiplication by column is equal to matrix-matrix multiplication by row.
- Prove matrix-matrix multiplication by column is equal to matrix-matrix multiplication by entry.
- Prove matrix-matrix multiplication by row is equal to matrix-matrix multiplication by entry.
\square Use row-partition version of matrix-matrix multiplication multiply a matrix on the left by:
- Shear matrix: $S_{i k}(c)$
- Dilation matrix: $D_{j}(c)$
- Permutation matrix: $P_{i k}$

LESSON 12: THE NONSINGULAR LINEAR-SYSTEMS PROBLEM (NLSP)

\square Recall the two fundamental questions about linear-systems problem

- The existence problem
- The uniqueness problem
$\square \quad$ Define the nonsingular linear-system problem and discuss
- What is given and what is unknown?
- How does this relate to functions (think domain and codomain)?
- How is this related to the matrix-vector multiplication problem?
- How many solutions can exist to this problem?
- How is the nonsingular linear-systems problem related to the span of the columns of matrix A?
\square Set up and solve a nonsingular linear-systems problem for a given mass-spring chain with n masses and ($n+1$) springs
where $n=2,3,4,5,6$
\square Set up linear systems problem for linear spline interpolation
- See examples 5.1.1 \& 5.1.2 in Lesson 12 Notes
$\square \quad$ Set up a linear systems problems using a Vandermonde matrix for polynomial modeling.
- Quadratic Polynomial: See example 5.1.4 in Jeff's Lesson 12 Notes
- Linear Polynomial: See example 5.1.5 in Jeff's Lesson 12 Notes
\square For a given diagonal matrix $D \in \mathbb{R}^{n \times n}$ with nonzero diagonal elements, solve the nonsingular linear-systems problem $D \cdot \boldsymbol{x}=\boldsymbol{b}$
\square For a given upper-triangular matrix $U \in \mathbb{R}^{n \times n}$ with nonzero diagonal elements, properly apply backward substitution algorithm to solve the nonsingular linear-systems problem $U \cdot \boldsymbol{x}=\boldsymbol{y}$
\square For a given lower-triangular matrix $L \in \mathbb{R}^{n \times n}$ with nonzero diagonal elements, properly apply forward substitution algorithm to solve the nonsingular linear-systems problem $L \cdot \boldsymbol{y}=\boldsymbol{b}$
$\square \quad$ Multiply by elementary matrices to create an upper-triangular matrix U
\square Apply matrix-matrix multiplication to solve linear systems problem

Math 2B: Lesson Learning Outcomes

LESSON 13: MATRIX INVERSES

$\square \quad$ Recall and apply the definition of the inverse of a square matrix
$\square \quad$ State, apply and derive the inverse formulas for elementary matrices

- \quad Shear matrices: $\left(S_{i k}(c)\right)^{-1}=S_{i k}(-c)$
- Dilation matrices: $\left(D_{j}(c)\right)^{-1}=D_{j}\left(\frac{1}{c}\right)$
- Permutation matrices: $\left(P_{i k}\right)^{-1}=P_{i k}{ }^{T}=P_{i k}$
$\square \quad$ State and prove the following properties of Matrix inverses:
- Prove $(A B)^{-1}=B^{-1} A^{-1}$ AND $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
\square Find the inverse of a 2-by-2 matrix using formula
$\square \quad$ Use elementary row operations matrices to generate the inverse of an n-by-n matrix A
\square Use a given matrix inverse A^{-1} to find solution to linear system $A \boldsymbol{x}=\boldsymbol{b}$
\square Use elementary matrices to derive Cramer's Rule for the inverse of a 2-by-2 matrix, given by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

LESSON 14: THE INVERTIBLE MATRIX THEOREM (IMT)

\square Properly identify and apply parts $1-22$ of the Invertible Matrix Theorem

LESSON 15: LU FACTORIZATION WITHOUT PIVOTING

$\square \quad$ Find the LU Factorization of a given 3-by-3 or 4-by-4 matrix
\square Use a given LU Factorization $A=L U$ to solve given linear system problem $A \cdot \boldsymbol{x}=\boldsymbol{b}$
\square Use elementary row operations matrices to generate LU factorization
\square Prove that the product of lower-triangular matrices is lower-triangular (or upper-triangular case)

LESSON 16: DETERMINANTS

\square Identify and apply the definition of the determinant for 2-by-2 matrices: $A \in \mathbb{R}^{2 \times 2}$
\square Identify and apply the definition of the determinant for 3-by-3 matrices: $A \in \mathbb{R}^{3 \times 3}$
\square Identify and apply the definition of the determinant for an upper-triangular matrix: $U \in \mathbb{R}^{n \times n}$
\square Apply properties of determinants to analyze linear system problem
$\square \quad$ Identify and apply properties $1-9$ of determinants
\square Given $A \in \mathbb{R}^{n \times n}$, use your calculator to find the determinant: $\operatorname{det}(A)$
\square Properly identify and use permutation definition of determinants

LESSON 17: THE GENERAL LINEAR-SYSTEMS PROBLEM (GLSP)

\square Define the general linear-systems problem (GLSP) and discuss

- What is given and what is unknown?
- How does this relate to functions (think domain and codomain)?
- How is this related to the matrix-vector multiplication problem?
- What do solutions of the general linear-systems problem have to do with the span of the columns of matrix A?
\square Given an m-by-n matrix, transform into REF or RREF using multiplication by elementary matrices
\square Given an m-by-n matrix A, use $\operatorname{RREF}(A)$ to identify linearly independent columns
\square If $U=\operatorname{RREF}(A)$, prove $A \cdot \boldsymbol{x}=\mathbf{0}$ if and only if $U \cdot \boldsymbol{x}=\mathbf{0}$
\square Use your calculator to transform a given matrix A into $U=\operatorname{RREF}(A)$

LESSON 18: SOLUTIONS SETS TO THE GENERAL LINEAR-SYSTEMS PROBLEM

\square For a given matrix $A \in \mathbb{R}^{m \times n}$, define the homogeneous linear-systems problem
\square Find all solutions to linear systems problem $A \cdot \boldsymbol{x}=\boldsymbol{b}$ using the equivalent linear-systems problem $U \cdot \boldsymbol{x}=\boldsymbol{y}$, where
$\square \quad U=E \cdot A=\operatorname{RREF}(\mathrm{A}), \boldsymbol{y}=E \cdot \boldsymbol{b}$, AND $E=E_{t} \cdots E_{2} \cdot E_{1}$ is a product of t elementary matrices
\square Given $A \in \mathbb{R}^{m \times n}$, use $\operatorname{RREF}(A)$ to solve homogeneous linear system: $A \cdot x=\mathbf{0}$
\square Discuss how the solution set for a GLSP relates to the the superposition principle of matrix-vector multiplication given by $\boldsymbol{A} \cdot\left(c_{1} \boldsymbol{x}_{\mathbf{1}}+c_{2} \boldsymbol{x}_{2}\right)=c_{1}\left(\boldsymbol{A} \cdot \boldsymbol{x}_{\mathbf{1}}\right)+c_{2}\left(\boldsymbol{A} \cdot \boldsymbol{x}_{\mathbf{2}}\right)$
\square Properly construct the solution set to the general linear-systems problem $A \cdot \boldsymbol{x}=\boldsymbol{b}$ using the formula

$$
\boldsymbol{x}=\boldsymbol{x}^{*}+c_{1} \cdot \boldsymbol{z}_{\mathbf{1}}+\cdots+c_{\boldsymbol{d}} \cdot \mathbf{z}_{\boldsymbol{d}}
$$

where $\boldsymbol{x}^{*} \in \mathbb{R}^{\boldsymbol{n}}$ is a particular solution to our original GLSP, d is the number of nonpivot columns of $A \in \mathbb{R}^{m \times n}$, and $\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{\boldsymbol{d}} \in \mathbb{R}^{\boldsymbol{n}}$ are linearly independent solution to our associated homogeneous linear-systems problem.

Math 2B: Lesson Learning Outcomes

LESSON 19: VECTOR SPACES

$\square \quad$ Properly identify algebraic definition of vector spaces

- Prove that \mathbb{R}^{n} is a vector space
- Prove that $\mathbb{R}^{m \times n}$ is a vector space
\square Use properties of vector spaces to identify vector spaces
- Give examples of subspaces of \mathbb{R}^{n}
- Give examples, with reasoning, of subsets of \mathbb{R}^{n} that are not subspaces
$\square \quad$ Prove that a subset W of vector space V is a subspace

LESSON 20: NULL AND COLUMN SPACES

$\square \quad$ For $A \in \mathbb{R}^{m \times n}$, prove each of the following

- $\operatorname{Null}(A)$ is a subspace of \mathbb{R}^{n}
- $\operatorname{Col}\left(A^{T}\right)$ is a subspace of \mathbb{R}^{n}
- $\operatorname{Null}\left(A^{T}\right)$ is a subspace of \mathbb{R}^{m}
- $\quad \operatorname{Col}(A)$ is a subspace of \mathbb{R}^{m}
\square Given m-by-n matrix A, show how to use $\operatorname{RREF}(A)$ to find $\operatorname{Null}(A)$ and the $\operatorname{Col}(A)$
\square Discuss how to use $\operatorname{Col}(A)$ to answer the existence problem for a GLSP
$\square \quad$ Discuss how to use the $\operatorname{Null}(A)$ to answer the uniqueness problem for a GLSP

LESSON 21: DIMENSION AND RANK

$\square \quad$ Recall and apply the definition of basis vectors.
\square Given a set of vectors $\left\{\boldsymbol{a}_{\boldsymbol{k}}\right\}_{k=1}^{n} \subseteq \mathbb{R}^{m}$, find a basis for the span of this set.
\square Given a set of vectors $\left\{\boldsymbol{a}_{\boldsymbol{k}}\right\}_{k=1}^{n} \subseteq \mathbb{R}^{m}$, find the dimension of $\operatorname{Span}\left(\left\{\boldsymbol{a}_{\boldsymbol{k}}\right\}_{k=1}^{n}\right)$
\square Given $A \in \mathbb{R}^{m \times n}$, find $\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Col}(A))$
\square Given $A \in \mathbb{R}^{m \times n}$, find $\operatorname{dim}(\operatorname{Null}(A))$
\square Given a list of vectors $\left\{\boldsymbol{a}_{\boldsymbol{k}}\right\}_{k=1}^{n}$, find the dimension of $\operatorname{Span}\left(\left\{\boldsymbol{a}_{\boldsymbol{k}}\right\}_{k=1}^{n}\right)$
\square Given $A \in \mathbb{R}^{m \times n}$, discuss how the $\operatorname{dim}(\operatorname{Null}(A))$ relates to the number of solution of the general linear-systems problem and the homogeneous linear-systems problem.

LESSON 22: INTRODUCTION TO THE LEAST-SQUARES PROBLEM

$\square \quad$ Set up least-square problem using list of data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{m}$ and Vandermonde matrix

- Use least-squares problem to set up linear model
- Use least-squares problem to set up quadratic model
$\square \quad$ Solve normal equations to find least-squares solution
\square Discuss connection between $\operatorname{rank}(\mathrm{A})$ and least squares solution
\square Use least-squares model to interpolate or extrapolate values from data set

LESSON 23: ORTHOGONAL SETS

\square Prove that $\operatorname{Nul}(\mathrm{A})$ is orthogonal to $\operatorname{Col}\left(\mathrm{A}^{\mathrm{T}}\right)$
$\square \quad$ Prove that $\operatorname{Nul}\left(\mathrm{A}^{\mathrm{T}}\right)$ is orthogonal to $\operatorname{Col}(\mathrm{A})$
\square Derive the orthogonal projection formula used in the Gram Schmidt processes

LESSON 24: ORTHOGONAL PROJECTIONS

\square Given two vectors $\boldsymbol{b}, \boldsymbol{y} \in \mathbb{R}^{\boldsymbol{n}}$, find $\operatorname{Proj}_{Y}(\boldsymbol{b})$ where $Y=\operatorname{Span}(\boldsymbol{y})$
\square Given two vectors $\boldsymbol{b}, \boldsymbol{y} \in \mathbb{R}^{\boldsymbol{n}}$, find $\operatorname{Proj}_{Y^{\perp}}(\boldsymbol{b})$ where $Y^{\perp}=[\operatorname{Span}(\boldsymbol{y})]^{\perp}$
\square Explain the origins of algebra behind orthogonal projections using dot-product

LESSON 25: THE CLASSICAL GRAM SCHMIDT ALGORITHM

\square Given matrix A, find an orthogonal basis for Col(A) using Classical Gram-Schmidt
\square Use Classical Gram-Schmidt to solve a least-squares problem

LESSON 26: QR FACTORIZATION VIA MODIFIED GRAM SCHMIDT ALGORITHM

\square Given a matrix A, produce the QR factorization of A using Modified Gram Schmidt
\square Use the QR Factorization of a matrix to solve a least-squares problem

Math 2B: Lesson Learning Outcomes

Compare and contrast Classical Gram Schmidt and Modified Gram Schmidt
LESSON 27: THE STANDARD EIGENVALUE PROBLEM

\square Starting from the matrix-version of the differential equation for undamped simple harmonic oscillators given by $M \ddot{\boldsymbol{u}}+K \boldsymbol{u}=\mathbf{0}$, derive the statement of the eigenvalue problem $A \boldsymbol{x}=\lambda \boldsymbol{x}$ associated with this differential equation (use ansatz).
\square Given a 2-by-2 matrix A, find the eigenvalues and eigenvectors of A
\square Given a 3-by-3 matrix A, find the eigenvalues and eigenvectors of A

LESSON 28: THE CHARACTERISITC EQUATION

\square Given a 2-by-2 or 3-by-3 matrix A, find its characteristic polynomial
\square Factor a characteristic polynomial to find its roots
\square Prove that similar matrices have identical characteristic polynomials

LESSON 29: DIAGONALIZATION

\square Diagonalize a given 2-by-2 or 3-by-3 matrix A
\square Identify the geometric and algebraic multiplicity of given eigenvalues

