Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Topics: Section 8.1 p. 596-606 Section 8.2 p. 607-619

Definition. p. 597 Sequence

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a function $a: \mathbb{N} \longrightarrow \mathbb{R}$. In other words, a sequences is an ordered list of numbers. We can write any sequence as
i. An ordered set as $\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots\right\}$. The term a_{1} is called the first term, a_{2} is called the second term, and in general a_{n} is called the nth term.
ii. A recurrence relation of the form $a_{n+1}=f\left(a_{n}\right)$ for $n \in \mathbb{N}$ where a_{1} must be given.
iii. An explicit formula of the form $a_{n}=f(n)$ for $n \in \mathbb{N}$.

Definition. p. 599 Limit of a Sequence

If the terms of sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ approach a unique number L as n increases, we say

$$
\lim _{n \rightarrow \infty} a_{n}=L .
$$

That is to say, if a_{n} can be made arbitrarily close to L by taking n "sufficiently" large, then we say the limit of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is L.

If $\lim _{n \rightarrow \infty} a_{n}=L$, then we say that $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to L.
If the terms of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ do not approach a single number as n increases, we say the sequences has no limit and the sequence diverges.

Theorem 8.1. p. 607 Limits of Sequences from Limits of Functions

Suppose $f(x)$ is a function such that $f(n)=a_{n}$ for all $n \in \mathbb{N}$. If $\lim _{x \rightarrow \infty} f(x)=L$, then the limit of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is given by $\lim _{n \rightarrow \infty} a_{n}=L$.

Theorem 8.2. p. 607 Limit Laws for Sequences

Suppose that $c \in \mathbb{R}$ and p is a positive integer. Suppose that the limits

$$
\lim _{n \rightarrow \infty} a_{n}=A \quad \text { and } \quad \lim _{n \rightarrow \infty} b_{n}=B
$$

exist. Then, as long as we check these conditions, we can conclude

1. Sum Law:

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}=A+B
$$

2. Difference Law:

$$
\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}=A-B
$$

3. Constant Multiple Law: $\quad \lim _{n \rightarrow \infty}\left(c \cdot a_{n}\right)=c \cdot \lim _{n \rightarrow \infty} a_{n}=c \cdot A$
4. Product Law:

$$
\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} b_{n}\right)=A \cdot B
$$

5. Quotient Law:

$$
\lim _{n \rightarrow \infty}\left[\frac{a_{n}}{b_{n}}\right]=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}=\frac{A}{B} \text { if } \lim _{n \rightarrow \infty} b_{n}=B \neq 0
$$

6. Constant Law:

$$
\lim _{n \rightarrow \infty} c=c
$$

7. General Root Law:

$$
\lim _{n \rightarrow \infty}\left[a_{n}^{p}\right]=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p}=A^{p} \quad\left(\text { if } p>0 \text { and } a_{n}>0 .\right)
$$

Definition. p. 608 Terminology for Sequences

$\left\{a_{n}\right\}_{n=1}^{\infty}$ is increasing if $a_{n+1}>a_{n}$ for all $n \in \mathbb{N}$
$\left\{a_{n}\right\}_{n=1}^{\infty}$ is nondecreasing if $a_{n+1} \geq a_{n}$ for all $n \in \mathbb{N}$
$\left\{a_{n}\right\}_{n=1}^{\infty}$ is decreasing if $a_{n+1}<a_{n}$ for all $n \in \mathbb{N}$
$\left\{a_{n}\right\}_{n=1}^{\infty}$ is nonincreasing if $a_{n+1} \leq a_{n}$ for all $n \in \mathbb{N}$
$\left\{a_{n}\right\}_{n=1}^{\infty}$ is monotonic if it is either nonincreasing or nondecreasing
$\left\{a_{n}\right\}_{n=1}^{\infty}$ is bounded if there is a real number $M \in \mathbb{R}$ such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$

Definition. p. 609 Geometric Sequence

We say that a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a geometric sequence if it has the property that each term a_{n+1} is obtained by multiplying the previous term a_{n} by a fixed constant r. In other words, geometric sequences have the property that $a_{n+1}=r a_{n}$. The term r is call the ratio of the sequence. Further, all geometric sequences can be written with general formula $a_{n}=a \cdot r^{n-1}$ for some constant $a \in \mathbb{R}$.

Theorem 8.3. p. 611 Limit of a geometric sequence

Let $r \in \mathbb{R}$ be a real number. Then

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0 & \text { if }-1<r<1 \\ 1 & \text { if } r=1 \\ \text { does not exist } & \text { if } r \leq-1 \text { or } r>1\end{cases}
$$

If $r>0$, then the sequences $\left\{r^{n}\right\}_{n=1}^{\infty}$ is a monotonic sequence. if $r<0$, then the sequence $\left\{r^{n}\right\}_{n=1}^{\infty}$ oscillates.

Theorem 8.4. p. 611 The Squeeze Theorem

Let $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$, and $\left\{c_{n}\right\}_{n=1}^{\infty}$ be sequences with $a_{n} \leq b_{n} \leq c_{n}$ for all integers n greater than some index $N \in \mathbb{N}$. If

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L
$$

then $\lim _{n \rightarrow \infty} b_{n}=L$.

Theorem 8.5. p. 612 Bounded Monotonic Sequences

Every bounded, monotonic sequence is convergent.

Theorem. Absolute Value to Conclude Convergence

If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Theorem. Direct Substitution Property

If $\lim _{n \rightarrow \infty} a_{n}=L$ and the function f is continuous at L, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L) .
$$

Definition. p. 615 Precise Definition of a Limit of a Sequence

The sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges to limit L provided that the terms of a_{n} can be made "arbitrarily" close to L by taking n "sufficiently large." More precisely, sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ has a unique limit L if and only if, for any $\epsilon>0$, there is a positive integer $N \in \mathbb{N}$ (that depends only on ϵ) such that if $n>N$, then

$$
\left|a_{n}-L\right|<\epsilon
$$

If the limit of a sequence is L, we say the sequence converges to L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

A sequence that does not converge is said to diverge.

