Definition. p. 597 Sequence

A sequence $\{a_n\}_{n=1}^{\infty}$ is a function $a : \mathbb{N} \longrightarrow \mathbb{R}$. In other words, a sequences is an ordered list of numbers. We can write any sequence as

i. An ordered set as $\{a_1, a_2, a_3, a_4, ..., a_n, ...\}$. The term a_1 is called the *first term*, a_2 is called the *second term*, and in general a_n is called the *nth term*.

ii. A recurrence relation of the form $a_{n+1} = f(a_n)$ for $n \in \mathbb{N}$ where a_1 must be given.

iii. An **explicit formula** of the form $a_n = f(n)$ for $n \in \mathbb{N}$.

Definition. p. 599 Limit of a Sequence

If the terms of sequence $\{a_n\}_{n=1}^{\infty}$ approach a unique number L as n increases, we say

$$\lim_{n \to \infty} a_n = L$$

That is to say, if a_n can be made arbitrarily close to L by taking n "sufficiently" large, then we say the limit of the sequence $\{a_n\}_{n=1}^{\infty}$ is L.

If $\lim_{n\to\infty} a_n = L$, then we say that $\{a_n\}_{n=1}^{\infty}$ converges to L.

If the terms of the sequence $\{a_n\}_{n=1}^{\infty}$ do not approach a single number as *n* increases, we say the sequences has no limit and the sequence **diverges**.

Theorem 8.1. p. 607 Limits of Sequences from Limits of Functions

Suppose f(x) is a function such that $f(n) = a_n$ for all $n \in \mathbb{N}$. If $\lim_{x \to \infty} f(x) = L$, then the limit of the sequence $\{a_n\}_{n=1}^{\infty}$ is given by $\lim_{n \to \infty} a_n = L$.

Suppose that $c \in \mathbb{R}$ and p is a positive integer. Suppose that the limits

$$\lim_{n \to \infty} a_n = A \qquad \text{and} \qquad \lim_{n \to \infty} b_n = B$$

exist. Then, as long as we check these conditions, we can conclude

- 1. Sum Law: $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = A + B$
- 2. Difference Law: $\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n = A B$
- 3. Constant Multiple Law: $\lim_{n \to \infty} (c \cdot a_n) = c \cdot \lim_{n \to \infty} a_n = c \cdot A$
- 4. Product Law: $\lim_{n \to \infty} (a_n \cdot b_n) = \left(\lim_{n \to \infty} a_n\right) \cdot \left(\lim_{n \to \infty} b_n\right) = A \cdot B$
- 5. Quotient Law: $\lim_{n \to \infty} \left[\frac{a_n}{b_n} \right] = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{A}{B} \text{ if } \lim_{n \to \infty} b_n = B \neq 0$
- 6. Constant Law: $\lim_{n \to \infty} c = c$
- 7. General Root Law: $\lim_{n \to \infty} \left[a_n^p \right] = \left[\lim_{n \to \infty} a_n \right]^p = A^p \qquad (\text{if } p > 0 \text{ and } a_n > 0.)$

Definition. p. 608 Terminology for Sequences

 $\{a_n\}_{n=1}^{\infty}$ is **increasing** if $a_{n+1} > a_n$ for all $n \in \mathbb{N}$

- $\{a_n\}_{n=1}^{\infty}$ is **nondecreasing** if $a_{n+1} \ge a_n$ for all $n \in \mathbb{N}$
- $\{a_n\}_{n=1}^{\infty}$ is **decreasing** if $a_{n+1} < a_n$ for all $n \in \mathbb{N}$
- $\{a_n\}_{n=1}^{\infty}$ is **nonincreasing** if $a_{n+1} \leq a_n$ for all $n \in \mathbb{N}$
- $\{a_n\}_{n=1}^{\infty}$ is **monotonic** if it is either nonincreasing or nondecreasing
- $\{a_n\}_{n=1}^{\infty}$ is **bounded** if there is a real number $M \in \mathbb{R}$ such that $|a_n| \leq M$ for all $n \in \mathbb{N}$

Definition. p. 609 Geometric Sequence

We say that a sequence $\{a_n\}_{n=1}^{\infty}$ is a **geometric sequence** if it has the property that each term a_{n+1} is obtained by multiplying the previous term a_n by a fixed constant r. In other words, geometric sequences have the property that $a_{n+1} = ra_n$. The term r is call the **ratio** of the sequence. Further, all geometric sequences can be written with general formula $a_n = a \cdot r^{n-1}$ for some constant $a \in \mathbb{R}$.

Theorem 8.3. p. 611 Limit of a geometric sequence

Let $r \in \mathbb{R}$ be a real number. Then

$$\lim_{n \to \infty} r^n = \begin{cases} 0 & \text{if } -1 < r < 1\\ 1 & \text{if } r = 1\\ \text{does not exist} & \text{if } r \le -1 \text{ or } r > 1 \end{cases}$$

If r > 0, then the sequences $\{r^n\}_{n=1}^{\infty}$ is a monotonic sequence. if r < 0, then the sequence $\{r^n\}_{n=1}^{\infty}$ oscillates.

Theorem 8.4. p. 611 The Squeeze Theorem

Let $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$, and $\{c_n\}_{n=1}^{\infty}$ be sequences with $a_n \leq b_n \leq c_n$ for all integers n greater than some index $N \in \mathbb{N}$. If

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L_s$$

then $\lim_{n \to \infty} b_n = L$.

Every bounded, monotonic sequence is convergent.

Theorem. Absolute Value to Conclude Convergence

If $\lim_{n \to \infty} |a_n| = 0$, then $\lim_{n \to \infty} a_n = 0$.

Theorem. Direct Substitution Property

If $\lim_{n\to\infty} a_n = L$ and the function f is continuous at L, then

$$\lim_{n \to \infty} f(a_n) = f(L).$$

Definition. p. 615 Precise Definition of a Limit of a Sequence

The sequence $\{a_n\}_{n=1}^{\infty}$ converges to limit L provided that the terms of a_n can be made "arbitrarily" close to L by taking n "sufficiently large." More precisely, sequence $\{a_n\}_{n=1}^{\infty}$ has a unique limit L if and only if, for any $\epsilon > 0$, there is a positive integer $N \in \mathbb{N}$ (that depends only on ϵ) such that if n > N, then

$$|a_n - L| < \epsilon$$

If the **limit of a sequence** is L, we say the sequence **converges** to L and we write

$$\lim_{n \to \infty} a_n = L$$

A sequence that does not converge is said to **diverge**.