Lesson 16: Geometric and Telescoping Series Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Section 8.3: Infinite Series, p. 619-626

Definition. p. 602 Infinite Series

Let the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ be given. The sequence of partial sums $\left\{S_{n}\right\}_{n=1}^{\infty}$ associated with this sequence has the terms

$$
\begin{aligned}
S_{1} & =a_{1} \\
S_{2} & =a_{1}+a_{2} \\
S_{3} & =a_{1}+a_{2}+a_{3} \\
& \vdots \\
& \\
S_{n} & =a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{k=1}^{n} a_{k} \text { for } n \in \mathbb{N}
\end{aligned}
$$

The infinite series associated with this sequence is the limit of the sequence of partial sums

$$
\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

Definition. p.602 Limit of an Infinite Series

If the sequence of partial sums $\left\{S_{n}\right\}_{n=1}^{\infty}$ approaches a limit L, we say

$$
\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} S_{n}=L .
$$

If $\lim _{n \rightarrow \infty} S_{n}=L$, then we say the infinite series converges to L.
If the sequence of partial sums diverges, we say the infinite series diverges.

Definition. p. 620 Geometric Sum Formula

A geometric sum with n terms has the form

$$
S_{n}=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}=\sum_{k=1}^{n} a r^{k-1}
$$

Using this formulation, we see that

$$
S_{n}-r S_{n}=a-a r^{n}
$$

If $r \neq 1$, we can solve for S_{n} and produce the general formula for the geometric sum

$$
S_{n}=\sum_{k=1}^{n} a r^{k-1}=a \frac{1-r^{n}}{1-r}
$$

Note: We can write the series using different upper and lower index as follows:

$$
\sum_{k=1}^{n} a r^{k-1}=\sum_{k=0}^{n-1} a r^{k}
$$

Theorem 8.7. p. 621 Geometric Series Test

Let $a \neq 0$ and let r be a real number. Then, the series

$$
\sum_{k=1}^{\infty} a r^{k-1}
$$

has the following convergence behavior:

$$
\text { If }|r|<1 \text {, then the series converges and } \sum_{k=1}^{\infty} a r^{k-1}=\frac{a}{1-r} \text {. }
$$

$$
\text { If }|r| \geq 1 \text {, then the series diverges. }
$$

Note: We can write the series using different upper and lower index as follows:

$$
\sum_{k=1}^{\infty} a r^{k-1}=\sum_{k=0}^{\infty} a r^{k}
$$

In both cases, we can determine the convergence behavior based on the geometric sum formula combined with our knowledge of the limits of geometric sequences.

Definition. Telescoping Series Technique

A telescoping series is an infinite series whose partial sums eventually only have a fixed number of terms after cancellation. To apply this technique, we need to write each term of the series as a difference of terms from a a specially designed sequence. In particular, if we want to apply the telescoping series technique to series

$$
\sum_{n=1}^{\infty} b_{n}
$$

then, we need to write $b_{n}=a_{n}-a_{n+1}$ for a properly constructed sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$. If we can do this, then we can use the method of differences will generally lead to analysis that follows the pattern below:

$$
\begin{aligned}
\sum_{n=1}^{\infty} b_{n} & =\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left[a_{n}-a_{n+1}\right] \\
& =\lim _{N \rightarrow \infty}\left(\left[a_{1}-a_{2}\right]+\left[a_{2}-a_{3}\right]+\left[a_{3}-a_{4}\right]+\cdots+\left[a_{N-1}-a_{N}\right]\right) \\
& =\lim _{N \rightarrow \infty}\left(a_{1}+\left[-a_{2}+a_{2}\right]+\left[-a_{3}+a_{3}\right] \cdots+\left[-a_{N-1}+a_{N-1}\right]-a_{N}\right) \\
& =\lim _{N \rightarrow \infty} a_{1}-a_{N} \\
& =a_{1}-\lim _{N \rightarrow \infty} a_{N}
\end{aligned}
$$

Notice that, in the method of differences, the second part of each difference cancels the first part of the next term. The original series converges if and only the limit $\lim _{N \rightarrow \infty} a_{N}$ exists.

