Lesson 18: Ratio, Root and Comparison Tests Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Topics: Section 8.5: The Ratio, Root, and Comparison Tests, p. 641-649
Theorem 8.14. p. 641 Ratio Test

Let $\sum_{k=1}^{\infty} a_{k}$ be an infinite series with positive terms $a_{k}>0$ for all $k \in \mathbb{N}$. Let

$$
r=\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}
$$

1. If $0 \leq r<1$, then the series converges.
2. If $r>1$ (including $r=\infty$ ), then the series diverges.
3. If $r=1$, then the ratio test is inconclusive.

Note: In words, the ratio test says that the limit of the ratio of successive terms of a positive series must be less than 1 to guarantee convergence of the series.

## Theorem 8.15. p. 642 Root Test

Let $\sum_{k=1}^{\infty} a_{k}$ be an infinite series with nonnegative terms $a_{k} \geq 0$ for all $k \in \mathbb{N}$. Let

$$
\rho=\lim _{k \rightarrow \infty} \sqrt[k]{a_{k}}
$$

1. If $0 \leq \rho<1$, then the series converges.
2. If $\rho>1$ (including $\rho=\infty$ ), then the series diverges.
3. If $\rho=1$, then the root test is inconclusive.

Theorem 8.16. p. 643 The (Direct) Comparison Test

Let $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ be infinite series with positive terms.

1. If $0<a_{k} \leq b_{k}$ for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} b_{k}$ converge, then the series $\sum_{k=1}^{\infty} a_{k}$ converges.
2. If $0<b_{k} \leq a_{k}$ for all $k \in \mathbb{N}$ and $\sum_{k=1}^{\infty} b_{k}$ diverge, then the series $\sum_{k=1}^{\infty} a_{k}$ diverges.

Note: Whether a series converges depends on the behavior of the terms in the tail of the series. Thus, the inequalities

$$
0<a_{k} \leq b_{k} \text { and } 0<b_{k} \leq a_{k}
$$

in this test need not hold for all terms of the series. They must hold for all $k \geq M$ for some positive integer $M \in \mathbb{N}$.

Theorem 8.17. p. 643 The Limit Comparison Test

Let $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ be infinite series with positive terms. Let

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=L
$$

1. If $0<L<\infty$ (that is, $L$ is a positive, finite number), then series $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ either both converges or both diverge.
2. If $L=0$ and $\sum_{k=1}^{\infty} b_{k}$ converge, then the series $\sum_{k=1}^{\infty} a_{k}$ converges.
3. If $L=\infty$ and $\sum_{k=1}^{\infty} b_{k}$ diverges, then the series $\sum_{k=1}^{\infty} a_{k}$ diverges.

## Guidelines for Choosing a Test for Series Containing Positive Terms

Here are some reasonable suggestions when testing a series of positive terms for convergence:

1. Begin with the Divergence Test.
2. Ask yourself: "Is the series a special series?" and make sure you can recall the convergence properties of each of the following special series.
i. Geometric series
ii. $p$-series
iii. Telescoping series
iv. Harmonic series
3. If the general $k$ th term of the series look like a function that you can integrate, then try the integral test. Make sure you remember and can apply techniques of integration including:

- $u$-substitution
- Integration by parts

4. If the general $k$ th term of the series involves $k!, k^{k}$, or $a^{k}$ for some $a \in \mathbb{R}$, then try the ratio test. Series with $k$ in the exponent may yield to the Root Test.
5. If the general $k$ th term of the series is a rational function of $k$ (or a root of a rational function), use the Direct Comparison Test or the Limit Comparison test with the families of series given in Step 2 above as comparison series.
