Lesson 19: Alternating Series HandoutReference: Brigg's "Calculus: Early Transcendentals, Second Edition"Topics: Section 8.6: Alternating Series, p. 649 - 660

Definition. p. 649 Alternating Series

An **alternating series** is a series in the form

$$\sum_{k=1}^{\infty} (-1)^k a_k \qquad \text{or} \qquad \sum_{k=1}^{\infty} (-1)^{k+1} a_k.$$

where $a_k > 0$ for all $k \in \mathbb{N}$. In this case, the signs of each sequence term strictly alternate from positive to negative. The factor $(-1)^k$ or $(-1)^{k+1}$ has the pattern $\{..., 1, -1, 1, -1, 1, -1, ...\}$ and provides the alternating signs on the sequence of terms.

Theorem 8.18. p. 650 Alternating Series Test

Let $a_k > 0$ for all $k \in \mathbb{N}$ and consider the alternative series

$$\sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

If we confirm BOTH of the following:

- 1. The terms of the series are nonincreasing in magnitude $(0 < a_{k+1} \leq a_k \text{ for } k \text{ greater than some positive integer } M)$
- 2. $\lim_{k \to \infty} a_k = 0$

then the alternating series converges.

Theorem 8.19. p. 651 Alternating Harmonic Series

The alternating harmonic series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$

converges (even though the harmonic series diverges).

If
$$\sum_{k=1}^{\infty} |a_k|$$
 converges, then we say $\sum_{k=1}^{\infty} a_k$ converges absolutely.

If $\sum_{k=1}^{\infty} |a_k|$ diverges and $\sum_{k=1}^{\infty} a_k$ converges, then we say $\sum_{k=1}^{\infty} a_k$ converges conditionally.

Theorem 8.20. p. 652 Remainder in Alternating Series

Let $S = \sum_{k=1}^{\infty} (-1)^{k+1} a_k$ be a convergent alternating series with terms that are nonincreasing in magnitude. Let $R_n = S - S_n$ be the remainder in approximating the value of the series by the sum of its first *n* terms. Then

$$|R_n| \leq a_{n+1}$$

In other words, the magnitude of the remainder of a convergent alternating series. is less than or equal to the magnitude of the first neglected term.

Theorem 8.21. p. 651 Absolute Convergence Implies Convergence

If
$$\sum_{k=1}^{\infty} |a_k|$$
 converges, then $\sum_{k=1}^{\infty} a_k$ converges

Equivalently, if
$$\sum_{k=1}^{\infty} a_k$$
 diverges, then $\sum_{k=1}^{\infty} |a_k|$ diverges.

Note: In words, we say that absolute converges implies convergence.

Table 8.4	Special	Series and	Convergence	Tests
-----------	---------	------------	-------------	-------

		3		
Series or test	Form of series	Condition for convergence	Condition for divergence	Comments
Geometric series	$\sum_{k=0}^{\infty} a r^k, a \neq 0$	<i>r</i> < 1	$ r \ge 1$	If $ r < 1$, then $\sum_{k=0}^{\infty} a r^{k} = \frac{a}{1-r}.$
Divergence Test	$\sum_{k=1}^{\infty} a_k$	Does not apply	$\lim_{k\to\infty}a_k\neq 0$	Cannot be used to prove convergence
Integral Test	$\sum_{k=1}^{\infty} a_k$, where $a_k = f(k)$ and f is continuous, positive, and decreasing	$\int_{1}^{\infty} f(x) dx \text{ converges.}$	$\int_{1}^{\infty} f(x) dx$ diverges.	The value of the integral is not the value of the series.
<i>p</i> -series	$\sum_{k=1}^{\infty} \frac{1}{k^p}$	<i>p</i> > 1	$p \leq 1$	Useful for comparison tests
Ratio Test	$\sum_{k=1}^{\infty} a_k, \text{ where } a_k > 0$	$\lim_{k\to\infty}\frac{a_{k+1}}{a_k}<1$	$\lim_{k\to\infty}\frac{a_{k+1}}{a_k}>1$	Inconclusive if $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = 1$
Root Test	$\sum_{k=1}^{\infty} a_k, \text{ where } a_k \ge 0$	$\lim_{k\to\infty}\sqrt[k]{a_k}<1$	$\lim_{k\to\infty}\sqrt[k]{a_k}>1$	Inconclusive if $\lim_{k \to \infty} \sqrt[k]{a_k} = 1$
Comparison Test	$\sum_{k=1}^{\infty} a_k$, where $a_k > 0$	$0 < a_k \le b_k$ and $\sum_{k=1}^{\infty} b_k$ converges	$0 < b_k \le a_k$ and $\sum_{k=1}^{\infty} b_k$ diverges	$\sum_{k=1}^{\infty} a_k$ is given; you supply $\sum_{k=1}^{\infty} b_k$.
Limit Comparison Test	$\sum_{k=1}^{\infty} a_k$, where $a_k > 0$, $b_k > 0$	$0 \leq \lim_{k \to \infty} \frac{a_k}{b_k} < \infty \text{ and}$ $\sum_{k=1}^{\infty} b_k \text{ converges.}$	$\lim_{k \to \infty} \frac{a_k}{b_k} > 0 \text{ and } \sum_{k=1}^{\infty} b_k$ diverges.	$\sum_{k=1}^{\infty} a_k$ is given; you supply $\sum_{k=1}^{\infty} b_k$.
Alternating Series Test	$\sum_{k=1}^{\infty} (-1)^k a_k, \text{ where } \\ a_k > 0, \ 0 < a_{k+1} \le a_k$	$\lim_{k\to\infty}a_k=0$	$\lim_{k\to\infty}a_k\neq 0$	Remainder R_n satisfies $ R_n \le a_{n+1}$
Absolute Convergence	$\sum_{k=1}^{\infty} a_k, \ a_k$ arbitrary	$\sum_{k=1}^{\infty} a_k $		Applies to arbitrary series