Lesson 19: Alternating Series Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Topics: Section 8.6: Alternating Series, p. 649-660

Definition. p. 649 Alternating Series

An alternating series is a series in the form

$$
\sum_{k=1}^{\infty}(-1)^{k} a_{k} \quad \text { or }
$$

where $a_{k}>0$ for all $k \in \mathbb{N}$. In this case, the signs of each sequence term strictly alternate from positive to negative. The factor $(-1)^{k}$ or $(-1)^{k+1}$ has the pattern $\{\ldots, 1,-1,1,-1,1,-1, \ldots\}$ and provides the alternating signs on the sequence of terms.

Theorem 8.18. p. 650 Alternating Series Test

Let $a_{k}>0$ for all $k \in \mathbb{N}$ and consider the alternative series

$$
\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}
$$

If we confirm BOTH of the following:

1. The terms of the series are nonincreasing in magnitude $\left(0<a_{k+1} \leq a_{k}\right.$ for k greater than some positive integer M)
2. $\lim _{k \rightarrow \infty} a_{k}=0$
then the alternating series converges.

Theorem 8.19. p. 651 Alternating Harmonic Series

The alternating harmonic series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}
$$

converges (even though the harmonic series diverges).

Definition. p. 649 Absolute and Conditional Convergence

If $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges, then we say $\sum_{k=1}^{\infty} a_{k}$ converges absolutely.

If $\sum_{k=1}^{\infty}\left|a_{k}\right|$ diverges and $\sum_{k=1}^{\infty} a_{k}$ converges, then we say $\sum_{k=1}^{\infty} a_{k}$ converges conditionally.

Theorem 8.20. p. 652 Remainder in Alternating Series

Let $S=\sum_{k=1}^{\infty}(-1)^{k+1} a_{k}$ be a convergent alternating series with terms that are nonincreasing in magnitude. Let $R_{n}=S-S_{n}$ be the remainder in approximating the value of the series by the sum of its first n terms. Then

$$
\left|R_{n}\right| \leq a_{n+1}
$$

In other words, the magnitude of the remainder of a convergent alternating series. is less than or equal to the magnitude of the first neglected term.

Theorem 8.21. p. 651 Absolute Convergence Implies Convergence

If $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges, then $\sum_{k=1}^{\infty} a_{k}$ converges.

Equivalently, if $\sum_{k=1}^{\infty} a_{k}$ diverges, then $\sum_{k=1}^{\infty}\left|a_{k}\right|$ diverges.

Note: In words, we say that absolute converges implies convergence.

Table 8.4 Special Series and Convergence Tests

| Series or test | Form of series | Condition for
 convergence | Condition for
 divergence | Comments |
| :--- | :--- | :--- | :--- | :--- | (

