Lesson 20: Approximating Functions with Polynomials
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Section 9.1: Approximating Functions with Polynomials, p. 661-675

Definition. p. 661 Power Series (Centered at a)

A power series centered at a is an infinite series in the form

$$
\sum_{k=0}^{\infty} c_{k}(x-a)^{k}
$$

where the scalar $a \in \mathbb{R}$ is a constant real number, the sequence terms c_{k} are constant and x is variable. The sequence terms $\left\{c_{k}\right\}_{k=0}^{\infty}$ are known as the coefficients of the power series and scalar a is called the center of the power series. This type of series is called a power series because it is constructed using powers of $(x-a)$.

Definition. p. 664 Taylor Polynomials

Let $f(x)$ be a single-variable function with $f^{\prime}, f^{\prime \prime}, \ldots$ and $f^{(n)}$ defined a input $x=a$. The n thorder Taylor polynomial of f with its center at a, denoted as $p_{n}(x)$, has the property that it matches in value, slope and all derivatives up to the nth derivative at a with

$$
p_{n}(a)=f(a), \quad p_{n}^{\prime}(a)=f^{\prime}(a), \quad \cdots \quad p_{n}^{(n)}(a)=f^{(n)}(a) .
$$

The n th-order Taylor polynomial centered at a is

$$
\begin{aligned}
p_{n}(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =\sum_{k=0}^{n} c_{k}(x-a)^{k}
\end{aligned}
$$

The coefficients of this polynomial are given by

$$
c_{k}=\frac{f^{(k)}(a)}{k!}, \quad \text { for } k=0,1,2,3, \ldots, n
$$

Definition. p. 664 Remainder in a Taylor Polynomial

Let $p_{n}(x)$ be the Taylor polynomial of order n for the function $f(x)$. The remainder in using $p_{n}(x)$ to approximate f at the point x is

$$
R_{n}(x)=f(x)-p_{n}(x) .
$$

Theorem 9.1. p. 668 Taylor's Theorem (Remainder Theorem)

Let $f(x)$ be a function with continuous derivatives up to $f^{(n+1)}(x)$ on an open interval $I \subseteq \mathbb{R}$ containing the point a. Then, for all $x \in I$ we have

$$
f(x)=p_{n}(x)+R_{n}(x)
$$

where $p_{n}(x)$ is the n th-order Taylor polynomial for f centered at a and the remainder is

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},
$$

for some point c between x and a.

Theorem 9.2. p. 669 Estimate of the Remainder

Let n be a fixed positive integer. Suppose there exists a number M such that

$$
\mid f^{(n+1)(c) \mid \leq M}
$$

for all c between a and x inclusive. The remainder in the n th-order Taylor polynomial for f centered at a satisfies the following inequality

$$
\left|R_{n}(x)\right|=\left|f(x)-p_{n}(x)\right| \leq M \frac{|x-a|^{n+1}}{(n+1)!} .
$$

