Lesson 21: Properties of Power Series Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Section 9.2: Properties of Power Series, p. 675-684

## Definition. p. 676 Power Series (Centered at a)

A power series has the general form

$$
\sum_{k=0}^{\infty} c_{k}(x-a)^{k}
$$

where the scalar $a \in \mathbb{R}$ is a constant real number, the sequence terms $c_{k}$ are constant and $x$ is variable. The sequence terms $\left\{c_{k}\right\}_{k=0}^{\infty}$ are known as the coefficients of the power series and scalar $a$ is called the center of the power series. The set of all values of variable $x$ for which the series converges is called the interval of convergence, denoted as an interval $I \subseteq \mathbb{R}$. The distance from the center of the interval of convergence to the boundary of the interval is called the radius of convergence and is denoted by $R$.

Theorem 9.3. p. 678 Convergence of Power Series

A power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, centered at $a$ converges in one of three ways:

## 1. Infinite Radius of Convergence

The series converges for all values of variable $x \in \mathbb{R}$. In this case, the interval of converges is the entire real number line $I=\mathbb{R}$, denoted as interval $(-\infty, \infty)$ and the radius of convergence is $R=\infty$.

## 2. Finite, Positive Radius of Convergence

There is a real number $R>0$ such that the series converges for all $|x-a|<R$ and diverges for all $|x-a|>R$. In this case, the radius of convergence is the positive number $R$.

## 3. Zero Radius of Convergence

The series converges only at $x=a$ and the radius of convergence is $R=0$.

Theorem 9.4. p. 679 Combining Power Series

Suppose the functions $f(x)$ and $g(x)$ can be represented by convergent power series

$$
f(x)=\sum_{k=0}^{\infty} c_{k} x^{k} \quad \text { and } \quad g(x)=\sum_{k=0}^{\infty} d_{k} x^{k}
$$

on the interval $I$.

## 1. Sum and Difference Rule

The power series $\sum_{k=0}^{\infty}\left(c_{k} \pm d_{k}\right) x^{k}$ converges to $f(x) \pm g(x)$ on I.

## 2. Multiplication by a power function

Suppose that $m \in \mathbb{Z}$ with $k+m \geq 0$ for all terms of the power series

$$
x^{m} \sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty} c_{k} x^{m+k}
$$

This series converges to $x^{m} f(x)$ for all $x \neq 0$ in $I$. If $x=0$, the series converges to

$$
\lim _{x \rightarrow 0} x^{m} f(x) .
$$

## 3. Composition

If $h(x)=b x^{m}$ for some positive integer $m \in \mathbb{N}$ and a nonzero real number $b$, then the power series

$$
\sum_{k=0}^{\infty} c_{k}(h(x))^{k}
$$

converges to the composite function $f(h(x))$ for all $x$ such that $h(x)$ is in $I$.

Theorem 9.5. p. 680 Differentiating and Integrating Power Series

Suppose the power series

$$
\sum_{k=0}^{\infty} c_{k}(x-a)^{k}
$$

converges for all $|x-a|<R$ and defines a function $f(x)$ on that interval.

## 1. Differentiation of Power Series

The $f(x)$ is differentiable (and thus continuous) for all $|x-a|<R$. Moreover, we can find the derivative $f^{\prime}(x)$ by differentiating the power series for $f$ term by term

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left[\sum_{k=0}^{\infty} c_{k}(x-a)^{k}\right] \\
& =\sum_{k=0}^{\infty} c_{k} \frac{d}{d x}\left[(x-a)^{k}\right] \\
& =\sum_{k=0}^{\infty} k c_{k}(x-a)^{k} .
\end{aligned}
$$

for $|x-a|<R$.

## 2. Integration of Power Series

The indefinite integral of $f$ is found by integrating the power series for $f$, term by term with

$$
\begin{aligned}
\int f(x) d x & =\int\left[\sum_{k=0}^{\infty} c_{k}(x-a)^{k}\right] d x \\
& =\sum_{k=0}^{\infty} c_{k} \int\left[(x-a)^{k}\right] d x \\
& =\sum_{k=0}^{\infty} c_{k} \frac{(x-a)^{k+1}}{k+1}+c .
\end{aligned}
$$

for $|x-a|<R$, where $c$ is an arbitrary constant.

