Lesson 22: Taylor Series
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Section 9.3: Taylor Series, p. 684-696

Definition. p. 685 Taylor Series for a function

Let $f(x)$ be a single-variable function with continuous derivatives of all orders on an interval centered at the point $x=a$. The Taylor series for f centered at point a is

$$
\begin{aligned}
f(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
\end{aligned}
$$

Remark: For a Taylor series representation of a function to be useful, we need to know:
A. The values of x for which the Taylor series converges
B. The values for x for which the output of the Taylor series representation equals f

Definition. p. 685 Maclaurin Series for a function

Let $f(x)$ be a single-variable function with continuous derivatives of all orders on an interval centered at the point $x=0$. The Maclaurin series for f is the Taylor series for f centered at $a=0$ and given by

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k} .
\end{aligned}
$$

Definition. p. 688 Nonnegative Integer Binomial Coefficients

For nonnegative integers $p, k \in \mathbb{Z}$ with $0 \leq k \leq p$, we define the binomial coefficients to be given by

$$
\binom{p}{k}=\frac{p!}{k!(p-k)!}
$$

These coefficients for the rows of Pascal's Triangle.

Polynomial Tool Box Pascal's Triangle using Binomial Coefficients
$n=0:$
$\binom{0}{0}$
$n=1$:
$\binom{1}{0}$
$\binom{1}{1}$
$n=2$:
$\binom{2}{0}$
$\binom{2}{1}$
$\binom{2}{2}$
$n=3:$
$\binom{3}{0}$
$\binom{3}{1}$
$\binom{3}{2}$
$\binom{3}{3}$
$n=4:$
$\binom{4}{0}$
$\binom{4}{1}$
$\binom{4}{2}$
$\binom{4}{3} \quad\binom{4}{4}$
$n=5: \quad\binom{5}{0}$
$\binom{5}{1}$
$\binom{5}{2}$
$\binom{5}{3}$
$\binom{5}{4}$

Polynomial Tool Box Pascal's Triangle (Calculated Values)

$$
\begin{aligned}
& n=0: \\
& n=1 \text { : } \\
& n=2 \text {. } \\
& n=3 \text { : } \\
& 1 \\
& 1 \\
& n=4: \quad 1 \\
& n=4: \quad 1 \quad 4 \quad 6 \quad 4 \\
& 3 \\
& 1 \\
& n=5: 10 \quad 5 \quad 10 \quad 10 \quad 5 \quad 1
\end{aligned}
$$

Theorem. Binomial Theorem for perfect positive powers

For nonnegative integers $p \in \mathbb{Z}$, the polynomial

$$
(x+a)^{p}=\sum_{k=0}^{p}\binom{p}{k} x^{p-k} a^{k}
$$

Polynomial Tool Box First few cases of Binomial Theorem

Binomial Theorem

$$
\begin{aligned}
& (x+a)^{2}=x^{2}+2 a x+a^{2} \\
& (x-a)^{2}=x^{2}-2 a x+a^{2}
\end{aligned}
$$

$$
(x+a)^{3}=x^{3}+3 a x^{2}+3 a^{2} x+a^{3}
$$

$$
(x-a)^{3}=x^{3}-3 a x^{2}+3 a^{2} x-a^{3}
$$

$(x+1)^{2}=x^{2}+2 x+1$
$(x-1)^{2}=x^{2}-2 x+1$
$(x+1)^{3}=x^{3}+3 x^{2}+3 x+1$
$(x-1)^{3}=x^{3}-3 x^{2}+3 x+1$

$$
(x+a)^{4}=x^{4}+4 a x^{3}+6 a^{2} x^{2}+4 a^{3} x+a^{4} \quad(x+1)^{4}=x^{4}+4 x^{3}+6 x^{2}+4 x+1
$$

$$
(x-a)^{4}=x^{4}-4 a x^{3}+6 a^{2} x^{2}-4 a^{3} x+a^{4} \quad(x-1)^{4}=x^{4}-12 x^{3}+54 x^{2}-108 x+81
$$

Definition. p. 688 General Binomial Coefficients

For real numbers $p \in \mathbb{R}$ and natural numbers $k \in \mathbb{N}$, we define the binomial coefficents to be given by

$$
\binom{p}{k}=\frac{p(p-1)(p-2) \cdots(p-k+1)}{k!}, \quad\binom{p}{0}=1 .
$$

Theorem 9.6. p. 689 Binomial Series

For real numbers $p \in \mathbb{R}$ not equal to zero, the Taylor series for function

$$
f(x)=(1+x)^{p}
$$

centered at 0 is the binomial series given by

$$
\begin{aligned}
\sum_{k=0}^{\infty}\binom{p}{k} x^{k} & =1+\sum_{k=1}^{\infty} \frac{p(p-1)(p-2) \cdots(p-k+1)}{k!} x^{k} \\
& =1+p x+\frac{p(p-1)}{2!} x^{2}+\frac{p(p-1)(p-2)}{3!} x^{3}+\frac{p(p-1)(p-2)(p-3)}{4!} x^{4}+\cdots
\end{aligned}
$$

The series converges for $|x|<1$ (and possibly at the endpoints, depending on p). If p is a nonnegative integer, the series terminates and results in a polynomial of degree p.

Theorem 9.7. p. 692 Convergence of Taylor Series

Let $f(x)$ be a function with continuous derivatives of all orders on an open interval $I \subseteq \mathbb{R}$ that contains constant a. The Taylor series for f centered at a converges to f, for all $x \in I$, if and only if

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

for all x in I, where the remainder function at x is given by

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

where c is a properly chosen point between x and a.

