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Example 2: Linear Algebraic Nodal Analysis Algorithm
Circuit with 8 Resistors, 2 Voltage Sources, 2 Current Sources

(Revised version of Example 4.2.1 p. 122 of Artice Davis’s Textbook)

Example 2: Ideal schematic diagram
In this example, we build an electric circuit that includes eight 1kΩ resistors, two 5V dc voltage sources,
and two 2.5mA dc current sources. Figure 1 is an ideal circuit diagram that provides a complete description
of this circuit. Notice that in this diagram, we label and enumerate each ideal circuit element and assign
associated values.

Figure 1: Ideal circuit schematic diagram

Example 2: Parts needed for this circuit
To build this circuit, we need the following parts:

� One half-size 2.2"x 3.4"solderless breadboard

� Two red 0.2" jumper wires

� One blue 0.6" jumper wire

� Eight 1k resistors (brn-brn-blk-blk-brn)

� Two 5V dc voltage sources

� Two 2.5mA dc current sources

� Four fully-charged 9V batteries

� filler
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Example 2: Get started with a picture of the physical circuit
In Figure 2, we see a wiring diagram for the circuit we build in this example. The reader can find detailed
instructions on how to prototype this circuit at the bottom of this page under the “Example 2: Build this
circuit” section.

Figure 2: Digital Wiring Diagram for the Real Circuit.

Example 2: Build this circuit
To build the circuit, please grab all the necessary parts described in the “Example 2: Parts needed for this
circuit” section on the first page of this document. Then, follow the instructions below:

1. � Disconnect batteries from dc sources

2. � Insert red 0.2" jumper across i14 and i16

3. � Insert red 0.2" jumper across c14 and c16

4. � Insert blue 0.6" jumper across b8 and b14

5. � Insert resistor r1 across d8 and g8

6. � Insert resistor r2 across j8 and j14

7. � Insert resistor r3 across d16 and g16

8. � Insert resistor r4 across h16 and h24

9. � Insert resistor r5 across d24 and g24

10. � Insert resistor r6 across a16 and a24

11. � Insert resistor r7 across i24 and i30

12. � Insert resistor r8 across b24 and b30

13. � Insert red lead of vs1 in i14 and blk lead in d14

14. � Insert red lead of vs2 in h30 and blk lead in c30

15. � Insert red lead of is1 in j30 and blk lead in j16

16. � Insert red lead of is2 in a8 and blk lead in a30
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Example 2: Measure the node voltage potentials
Using the digital multimeter, let’s measure the voltage potential at the seven nodes of our circuit. We begin
by connecting the negative lead of our multimeter to node seven. Then, we connect the positive lead of the
multimeter to each of the seven nodes, one by one, to capture the voltage meter. In figure 3, we enumerate
the node locations on the wiring diagram for this circuit. In figure 3B, we should how to measure the voltage
potential at node 1.

Figure 3: Node Labels on Wiring Diagram.

As we capture this data, we fill out the table below by hand. In order to assist readers in judging the
accuracy of voltage measurements for this circuit example, we provide a YouTube video of one experimental
data set using this example circuit.

LANA Example 2, Table 1: Node potential measurements
Node Node Variable Measured value (V) Modeled value (V)

1 u1

2 u2

3 u3

4 u4

5 u5

6 u6

7 u7
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Compare and contrast the ideal schematic and wiring diagram
Let’s compare and contrast the ideal diagram with the wiring diagram. Notice that each ideal circuit element
seen in Figure 1 corresponds to a unique real circuit element pictured in Figure 2. Using this observation,
please make a bijection between the ideal circuit elements and the corresponding physical components used
to build the real circuit. By doing so, we train ourselves to translate back and forth between an ideal circuit
schematic diagram and the corresponding wiring diagram. This is valuable skill and takes practice.

In the work that follows, we analyze the electrical behavior of this circuit using the linear-algebraic nodal
analysis (LANA) algorithm. Interested readers can download a full description of this algorithm on the
support website for this work, provided at the URL below:

http://www.appliedlinearalgebra.com/blog/for-teachers/linear-algebra-laboratory-exercises/electrify-linear-systems

On that website, readers can click on the link titled “The Linear Algebraic Nodal Analysis Algorithm (.pdf).”
This will open a two-page document with a detailed overview of each step of the LANA algorithm. For a
more thorough description of this work, readers might consult the paper Electrify the linear systems problem
for our students (CITE). A soft copy of this paper is also available on the same support website mentioned
above. Let’s begin analyzing our circuit with the first step of the LANA algorithm.

Step 1: Identify and label the entire set of nodes in our circuit
We start our work in the LANA algorithm by explicitly identifying and enumerating the individual nodes
of our ideal circuit. To do so, we use the node identification heuristic in which we erase the element bodies
of all ideal circuit elements and leave only the leads. The remaining, contiguous segments of conductor are
known as the nodes of the circuit. In Figure 3 below, we redraw our ideal circuit schematic diagram from
in Figure 1 using this node identification heuristic. We then count and enumerate the nodes of this circuit
using positive integers. In this example, we see our circuit has seven nodes.

Figure 3: Node identification heuristic to identify and enumerate the nodes of circuit.
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Step 2: Model the circuit using a directed graph
The second step in the LANA algorithm is to represent the topology (FOOTNOTE) of our circuit as a
directed graph G = (N , E). We should, of course, check that we are given a complete description of a circuit
that contains only resistors, dc voltage sources, and dc current sources. The circuit presented in Figure 1 of
this example meets these specifications.

Step 2A: Track the dimensions of key features in our circuit

The nodes of our digraph correspond to the circuit nodes and represent the interconnections between the
circuit elements. For this specific example, we see

N = {1, 2, 3, 4, 5, 6, 7}.

The positive integer ng ∈ N denotes the number of elements in our set of nodes N . In this example, ng = 7
since we identified and enumerated 7 nodes in step 1 of this algorithm.

Next, we replace each circuit element with a directed edge in our digraph model. We can write each edge
e ∈ E as an ordered pair of nodes with E ⊂ N × N . The direction of edge e = (2, 1) goes from node 2 to
node 1. In other words, we say that edge e = (2, 1) leaves node 2 and enters node 1.

The variable m ∈ N represents the total number of edges in our graph. Because each edge of our digraph
corresponds to a single circuit element, the number of edges equals the number of circuit elements. To count
the edges, we sum of the number of resistors, denoted as mr ∈ N, the number of dc voltage sources, denoted
as a nonnegative integer mv ∈ Z, and the number of dc current sources, denoted as a nonnegative integer
mi ∈ Z. Mathematically, we write

m = mr + mv + mi.

As we see in Figures 1 and 2, there are a total of mr = 8 resistors, mv = 2 dc voltage sources, and mi = 2
current sources. Accordingly, our directed graph model of this circuit has m = 12 edges.

Step 2B: Orient and enumerate the edges of the digraph

We choose the direction of each edge using some knowledge of electronics. Specifically, we orient each edge
associated with a dc current source in the same direction as the current flow provided by said source. The
direction of each edge corresponding to a dc voltage source points from the positive “+” lead to the negative
“-” lead of that source. Finally, we assign arbitrary directions to all edges corresponding to current flowing
through the resistors.

We should note that we choose a very special enumeration scheme for the edges of our circuit. First
we count and label all edges corresponding to resistors as edges e1, e2, ..., emr . We continue our edge count
by labeling the edges associated with the voltage sources, yielding edges emr+1, ..., emr+mv

. Finally, we
enumerate our edges corresponding to current sources, producing edges emr+mv+1, ..., em.

The only condition required in each count is that we have a bijection between circuit elements and graph
edges. Although no specific sub-ordering is necessary, we recommend counting from top to bottom, left to
right whenever possible. By enumerating our edges using these guidelines, we enable a useful partition of the
matrices and vectors that model our circuit. Figure 4 above combine our rules for drawing directed edges
with the enumeration scheme to produce a visual representation of our set of edges. We can also write this
choice of edges in set notation as

E = { (1, 7)︸ ︷︷ ︸
e1

, (2, 1)︸ ︷︷ ︸
e2

, (2, 7)︸ ︷︷ ︸
e3

, (2, 3)︸ ︷︷ ︸
e4

, (3, 6)︸ ︷︷ ︸
e5

, (6, 7)︸ ︷︷ ︸
e6

, (3, 4)︸ ︷︷ ︸
e7

, (5, 6)︸ ︷︷ ︸
e8

, (2, 7)︸ ︷︷ ︸
e9

, (4, 5)︸ ︷︷ ︸
e10

, (4, 2)︸ ︷︷ ︸
e11

, (7, 5)︸ ︷︷ ︸
e12

}.
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Step 2C: Draw a directed graph model of the circuit.

Using the guidelines provided above, we draw a digraph model of our circuit, seen in Figure 4.

Figure 4: Digraph to model of our circuit in which each circuit element is replaced by a directed
edge. In this diagram, we have labeled each node of the digraph labeled using an integer.

Step 3: Create the entire incidence matrix
Next, we construct a entire incidence matrix to model the connectivity of the nodes in this directed graph.
The entry-by-entry definition of the entire incidence matrix Ag ∈ Rm×ng is given by

ajk =

 1 if edge ej leaves node k,
−1 if edge ej enters node k,

0 otherwise,

for j = 1, 2, ...,m and k = 1, 2, ..., ng. We see that the rows and columns of this matrix correspond to the
edges and the nodes of our digraph, respectively. Below we set up this entire incidence matrix table and
explicitly label the rows and columns of this matrix:

Nodes
1 2 3 4 5 6 7

E
dg

es

e1 1 0 0 0 0 0 -1
e2 -1 1 0 0 0 0 0
e3 0 1 0 0 0 0 -1
e4 0 1 -1 0 0 0 0
e5 0 0 1 0 0 -1 0
e6 0 0 0 0 0 1 -1
e7 0 0 1 -1 0 0 0
e8 0 0 0 0 1 -1 0
e9 0 1 0 0 0 0 -1
e10 0 0 0 1 -1 0 0
e11 0 -1 0 1 0 0 0
e12 0 0 0 0 -1 0 1

Table 1: Directed Incidence Table
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We can transform this table into the block-partitioned entire incidence matrix

Ag =



Arg

Avg

Aig



=



1 0 0 0 0 0 −1
−1 1 0 0 0 0 0

0 1 0 0 0 0 −1
0 1 −1 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 0 0 1 −1
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0
0 1 0 0 0 0 −1
0 0 0 1 −1 0 0
0 −1 0 1 0 0 0
0 0 0 0 −1 0 1


where Arg ∈ Rmr×ng , Avg ∈ Rmv×ng , and Aig ∈ Rmi×ng . When defining the block partitions of any matrix
or vector in our modeling scheme, we us subscripts r, v, and i denote the subblocks corresponding to digraph
edges that encode resistors, voltage sources, and current sources, respectively.

Step 4: Create all circuit vectors
The fourth step in our LANA algorithm is to describe the electrical behavior of each element in this circuit
using variables that are easy to organize, refer to, and manipulate. For this purpose, we rely on matrix and
vector arithmetic from applied linear algebra. In particular, we store all pertinent circuit variables in vector
format. This structure facilitates our ability to state the set of key circuit equations in matrix form.

Step 4A: Define circuit variables for the node voltage potentials

From step 1 of our algorithm, we know this there are ng = 7 distinct nodes in this circuit. Thus, let’s create
a vector ug ∈ Rng of node voltage potentials given by

ug =



u1

u2

u3

u4

u5

u6

u7


=



the voltage potential of node 1
the voltage potential of node 2
the voltage potential of node 3
the voltage potential of node 4
the voltage potential of node 5
the voltage potential of node 6
the voltage potential of node 7


As described below, in step 7 of the LANA algorithm we specifically choose a designate a datum node d ∈ N ,
also called the ground node. Once we do so, we set the corresponding voltage potential ud = 0. However,
in this early stage of our modeling process, we include all node voltage potentials in the vector ug. The
subscript g indicates that the ground node is included and has yet to be deleted.
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Step 4B: Define circuit variables for the voltage drops across each element

Next, we create our vector v ∈ Rm that stores the voltage drop across each element, with

v =



vr

vv

vi



=



v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12



=



the voltage drop across resistor 1
the voltage drop across resistor 2
the voltage drop across resistor 3
the voltage drop across resistor 4
the voltage drop across resistor 5
the voltage drop across resistor 6
the voltage drop across resistor 7
the voltage drop across resistor 8

the voltage drop across voltage source 1
the voltage drop across voltage source 2
the voltage drop across current source 1
the voltage drop across current source 2


where vr ∈ Rmr , vv ∈ Rmv , and vi ∈ Rmi . Since we calculate one voltage drop across each element in our
circuit and since there are precisely m = 12 elements in our circuit, we know there are exactly 12 entries in
this vector. Due to our chosen strategy for enumerating the edges, the vector v lists all voltage drops across
the resistors followed by the voltage drops across the voltage sources and ending with voltage drops across
the current sources. The stated partition of v that includes subblocks vr,vv,vi follows from this ordering.

Step 4C: Define circuit variables for the current running through each element

Finally, we create our vector i ∈ Rm to store the current running through each element, given by

i =



ir

iv

ii



=



i1
i2
i3
i4
i5
i6
i7
i8
i9
i10
i11
i12



=



the current through resistor 1
the current through resistor 2
the current through resistor 3
the current through resistor 4
the current through resistor 5
the current through resistor 6
the current through resistor 7
the current through resistor 8

the current through voltage source 1
the current through voltage source 2
the current through current source 1
the current through current source 2


where ir ∈ Rmr , iv ∈ Rmv , and ii ∈ Rmi . Since we calculate one current through each element in our circuit
and since there are precisely 12 branches in this example network, we know there are exactly 12 entries in
this vector. Again, using the same convention, we list all currents through the resistors first, followed by the
currents through the voltage sources and finally the currents through the current sources.
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Optional Extension to Step 4: Label all variables and reference directions
One unnecessary but illuminating step in this process is to redraw the ideal circuit model and explicitly label
all the voltage and current variables for every circuit element, as seen in Figure 5 below. Included in our
revised ideal circuit schematic will be a specific indication of the reference directions for the voltage drop
across each element as well as the reference direction for the current running through each element. In our
case, we always draw the reference current direction with the initial point of the current vector starting at
the lead with positive voltage potential and the terminal point of the current vector ending at the lead with
negative voltage potential. In other words, we assume the passive sign convention in which the current arrow
points from positive to negative (CITE: Artice Davis).

Figure 5: Redrawn Ideal Circuit Schematic Diagram with all variables labeled.

Notice that not all the scalar entries of the vectors v, i ∈ Rm are unknown variables. More specifically, the
vectors vv and ii store known constants defined by the voltage and current levels provided by the independent
sources we use to power our physical circuits. For example, we can use our assigned values for each dc voltage
source provided in the ideal circuit schematic in Figure 1 to conclude that

vv =

[
vv1
vv2

]
=

[
v9
v10

]
=

[
5
5

]
.

For j = 1, ...,mv, we say that vvj represents the assigned voltage value of the jth dc voltage source Vj in our
circuit, where these constants are measured in volts. Using the same reasoning, we know that

ii =

[
ii1
ii2

]
=

[
i11
i12

]
=

[
2.5
2.5

]
.

For j = 1, ...,mi, we say that iij represents the assigned current running through the jth dc current source
Ij in our circuit, as measured in milliamps.
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Step 5: State the entire set of circuit equations
In step five of the LANA algorithm, we state the entire set of circuit equations which include the circuit
KVLs, the circuit BCRs, and the circuit KCLs. Let’s take a look at each of these equations. We also see how
to combine these together to form a compact set of circuit equations that capture the electrical behavior of
our circuit in a single matrix equation.

Step 5A: State entire set of Kirchoff’s voltage laws in node potential form

We recall that our complete set of circuit equations begins with Kirchoff’s voltage law in node potential form
can be stated in block form as follows:

Ag ug = v ⇔

 Arg ug

Avg ug

Aig ug

 =

 vr

vv

vi


Using the subblock partitioning of the incidence matrix Ag and the voltage drop vector, we state the resulting
element-specific KVLs. We begin with the entrie set of resistor KVLs, given by

Arg ug = vr ⇔



1 0 0 0 0 0 −1
−1 1 0 0 0 0 0

0 1 0 0 0 0 −1
0 1 −1 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 0 0 1 −1
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0





u1

u2

u3

u4

u5

u6

u7


=



v1
v2
v3
v4
v5
v6
v7
v8


(1)

Notice that we can write the second subblock equation as a general linear-systems problem with known
right-hand side vector. We call this equation the entire set of voltage source KVLs in node potential form
and state these in matrix form as

Avg ug = vv ⇔
[

0 1 0 0 0 0 −1
0 0 0 1 −1 0 0

]


u1

u2

u3

u4

u5

u6

u7


=

[
v9
v10

]
=

[
vv1
vv2

]
. (2)

We return to this general linear-system problem in steps 8, 9, and 10 of our algorithm. Finally, the entire
set of current-source KVLs are given by the subblock equation

Aig ug = vi ⇔
[

0 −1 0 1 0 0 0
0 0 0 0 −1 0 1

]


u1

u2

u3

u4

u5

u6

u7


=

[
v11
v12

]
. (3)
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Step 5B: State entire set of circuit branch constituent relations (BCRs)

Next, we state our branch constituent relations for the resistors in our circuit. In our case, we state the
matrix version of Ohm’s law given by the equation

vr = R · ir ⇔ ir = G · vr

where R ∈ Rmr×mr is a diagonal matrix with the appropriate resistance values in each diagonal entry so
that vk = rk · ik for k = 1, 2, ...,mr. Since the kth resistor Rk has positive resistance value rk > 0, we can
also rewrite our Ohm’s law equations in conductance form, where the conductance matrix G = R−1 is a
diagonal and the main diagonal entries are defined by the conductances gk = 1/rk. In our physical circuit,
we have

ir = Gvr ⇔



i1
i2
i3
i4
i5
i6
i7
i8


=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





v1
v2
v3
v4
v5
v6
v7
v8


(4)

Step 5C: State entire set of Kirchoff’s current laws

Finally we state the entire set of KCLs using the equation

AT
g i = 0 ⇔

[
AT

rg AT
vg

AT
ig

]  ir
iv
ii

 = 0 (5)

Since both Ag and i are block partitioned matrices, we can restate our KCL’s as

AT
rg · ir + AT

vg · iv + AT
ig · ii = 0 (6)

We can state this equation in entry-by-entry form using the appropriate substitutions, yielding the equivalent
equation

1 −1 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 −1 1 0 1 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 1 0 −1

−1 0 −1 0 0 −1 0 0




i1
i2
i3
i4
i5
i6
i7
i8

+


0 0
1 0
0 0
0 1
0 −1
0 0

−1 0

[ i9
i10

]
+


0 0

−1 0
0 0
1 0
0 −1
0 0
0 1

[ i11
i12

]
=


0
0
0
0
0
0
0
0

 (7)

Each row of this equation encodes the sum of all currents the enter and leave the corresponding node. Indeed,
the entire incidence matrix Ag and each column of Ag corresponds to the nodes of our circuit. These KCL
equations are written using the transpose of Ag. Since the transpose operation swaps rows and columns, it
makes sense that the rows of the KCL equations also correspond to the nodes of our circuit.
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Step 6: Determine the ordinary and generalized nodes of the circuit
Our next step is to determine the ordinary and generalized nodes of the circuit. We can do this by deactivating
the circuit. To do so, we replace each current source with an open circuit by simply erasing the element
bodies for each current source. On the other hand, we replace each voltage source with a short circuit by
drawing each voltage source as a single lead.

Figure 6: Redrawn node identification heuristic diagram for deactivated circuit.

Each generalized node in our system is actually a set of individual circuit nodes that we identified in
Step 1 of our algorithm and that are connected by dc voltage sources. On the other hand, we say that an
ordinary node of our system is a single node that we identified in Step 1 of our algorithm and to which no
voltage source is connected. In step 8 of the LANA algorithm, we use these node categories to strategically
reduce our system of equations. For now, our goal is to classify every node in our system as either belonging
to a generalized node or as an ordinary node. For the specific circuit seen in Figure 1 of this example, our
node classification scheme is provided in Table II below.

Type of node Set of node indices Node variables Cardinality
Ordinary nodes {1, 3, 6} u1, u3, u6 3

Generalized node 1 {4, 5} u4, u5 2
Generalized node 2 {2, 7} u2, u7 2

Table II: Classification of ordinary and generalized nodes
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Step 7: Ground the circuit

Step 7A: Choose a datum node for the circuit

In this case, let’s choose our datum node to be node d = 7. Using the column-partition definition of
matrix-vector multiplication, we can revisit the entrie set of resistor KVLs, given by

v = Ag ug =



1 0 0 0 0 0 −1
−1 1 0 0 0 0 0
0 1 0 0 0 0 −1
0 1 −1 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 0 0 1 −1
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0
0 1 0 0 0 0 −1
0 0 0 1 −1 0 0
0 −1 0 1 0 0 0
0 0 0 0 −1 0 1




u1

u2

u3

u4

u5

u6

u7



= u1



1
−1
0
0
0
0
0
0
0
0
0
0


+ u2



0
1
1
1
0
0
0
0
1
0

−1
0


+ u3



0
0
0

−1
1
0
1
0
0
0
0
0


+ u4



0
0
0
0
0
0

−1
0
0
1
1
0


+ u5



0
0
0
0
0
0
0
1
0

−1
1
0


+ u6



0
0
0
0

−1
1
0

−1
0
0
0
0


+ u7



−1
0

−1
0
0

−1
0
0

−1
0
0
1


Since we choose node 7 as our ground node, we set u7 = 0 and the entire seventh column of this matrix
disappears from our KVL equations. Thus, to express the grounded circuit equations, we have no need to
mention of the seventh column nor do we need to refer to the entry u7 once we’ve grounded our circuit.
With this observation in mind, we edfine the ground node deflation matrix

D0 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


We then create the grounded voltage potential vector

u0 = DT
0 ug

We specify the entry-by-entry definition of this product as follows


u1

u2

u3

u4

u5

u6


︸ ︷︷ ︸

u0

=


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


︸ ︷︷ ︸

DT
0



u1

u2

u3

u4

u5

u6

u7


︸ ︷︷ ︸

ug

(8)
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Step 7B: Ground the circuit equations using deflation

We then form the grounded incidence matrix A0 by deflating the seventh column of the raw incidence matrix
Ag ∈ Rm×ng to form the initially reduced incidence matrix A0 ∈ Rm×n0 , with A0 = Ag D0. We can write
this equation entry-by-entry as follows



1 0 0 0 0 0
−1 1 0 0 0 0
0 1 0 0 0 0
0 1 −1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 1
0 0 1 −1 0 0
0 0 0 0 1 −1
0 1 0 0 0 0
0 0 0 1 −1 0
0 −1 0 1 0 0
0 0 0 0 −1 0


︸ ︷︷ ︸

A0

=



1 0 0 0 0 0 −1
−1 1 0 0 0 0 0
0 1 0 0 0 0 −1
0 1 −1 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 0 0 1 −1
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0
0 1 0 0 0 0 −1
0 0 0 1 −1 0 0
0 −1 0 1 0 0 0
0 0 0 0 −1 0 1


︸ ︷︷ ︸

Ag



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


︸ ︷︷ ︸

D0

Notice that A0 ∈ Rm×n0 where m = 12 and n0 = (ng − 1) = 6. This reduction results from deleting the
chosen datum node from our list of node voltage potentials. We can also update define component-specific
subblocks of our grounded incidence matrix using matrix algebra, with

A0 =

 Ar0

Av0

Ai0

 =

 Arg ·D0

Avg ·D0

Aig ·D0

 = Ag ·D0,

We can focus on each subblock equation separately. Let’s begin by calculating the resistor subblock of the
grounded incidence matrix Ar0 ∈ Rmr×n0 , where



1 0 0 0 0 0
−1 1 0 0 0 0
0 1 0 0 0 0
0 1 −1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 1
0 0 1 −1 0 0
0 0 0 0 1 −1


︸ ︷︷ ︸

Ar0

=



1 0 0 0 0 0 −1
−1 1 0 0 0 0 0
0 1 0 0 0 0 −1
0 1 −1 0 0 0 0
0 0 1 0 0 −1 0
0 0 0 0 0 1 −1
0 0 1 −1 0 0 0
0 0 0 0 1 −1 0


︸ ︷︷ ︸

Arg



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


︸ ︷︷ ︸

D0

(9)

We continue by finding the voltage-source subblock of the grounded incidence matrix Av0 ∈ Rmv×n0 , where

[
0 1 0 0 0 0
0 0 0 1 −1 0

]
︸ ︷︷ ︸

Av0

=
[

0 1 0 0 0 0 −1
0 0 0 1 −1 0 0

]
︸ ︷︷ ︸

Avg



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


︸ ︷︷ ︸

D0

(10)

Finally, we calculate the current-source subblock of the grounded incidence matrix Ai0 ∈ Rmi×n0 , where

[
0 −1 0 1 0 0
0 0 0 0 −1 0

]
︸ ︷︷ ︸

Ai0

=
[

0 −1 0 1 0 0 0
0 0 0 0 −1 0 1

]
︸ ︷︷ ︸

Aig



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0


︸ ︷︷ ︸

D0

(11)
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Step 8: State grounded circuit equations
Step 8A: State grounded KVLs in node potential form

v =



v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12



=



1 0 0 0 0 0
−1 1 0 0 0 0

0 1 0 0 0 0
0 1 −1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 1
0 0 1 −1 0 0
0 0 0 0 1 −1
0 1 0 0 0 0
0 0 0 1 −1 0
0 −1 0 1 0 0
0 0 0 0 −1 0




u1

u2

u3

u4

u5

u6

 = A0 · u0

This results in an equivalent set of grounded KVL equations in node potential form for the voltage drops
across each element of the circuit, given by

v =

 vr

vv

vi

 =

 Ar0 · u0

Av0 · u0

Ai0 · u0

 = A0 · u0

Notice that this voltage drop matrix equation results in three subblock matrix equations. We begin with the
grounded KVLs for the resistors, given by

Ar0 u0 = vr ⇔



1 0 0 0 0 0
−1 1 0 0 0 0

0 1 0 0 0 0
0 1 −1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 1
0 0 1 −1 0 0
0 0 0 0 1 −1




u1

u2

u3

u4

u5

u6

 =



v1
v2
v3
v4
v5
v6
v7
v8


(12)

The second subblock equation, referred to as the grounded KVLs for the voltage sources, is given in entry-
by-entry form as

Av0 u0 = vv ⇔
[

0 1 0 0 0 0
0 0 0 1 −1 0

]

u1

u2

u3

u4

u5

u6

 =

[
v9
v10

]
=

[
vv1
vv2

]
. (13)

Finally, the grounded KVL equations for the current source are given by the subblock equation

Ai0 u0 = vi ⇔
[

0 −1 0 1 0 0
0 0 0 0 −1 0

]

u1

u2

u3

u4

u5

u6

 =

[
v11
v12

]
. (14)
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Step 8B: Recall entire set of circuit BCRs and combine with grounded KVLs

From our work in Step 5B of the LANA algorithm, we know that ir = G · vr. We can combine this entire
set of Ohm’s law equations in conductance form with our grounded KVL equations for the resistor subblock
of our circuit to see that

ir = G ·Ar0 · u0. (15)

Step 8C: State grounded KCLs

We can also write the grounded version of the Kirchoff’s current law equations for our system with

AT
0 · i = 0.

Once again, since both A0 and i are block partitioned matrices, we can restate our KCL’s as

AT
r0 · ir + AT

v0 · iv + AT
i0 · ii = 0 (16)

Step 8D: Write modified nodal analysis matrix equation

Using Step 8B of our algorithm, we can rewrite our grounded KCL equations in subblock form (16) by
replacing the vector ir with the equivalent node potential equation (15), yeilding

AT
r0 ·G ·Ar0 · u0 + AT

v0 · iv + AT
i0 · ii = 0 (17)

As mentioned in the Step 4 of our algorithm, the entries of the vector ii are known constants and thus we
can bring the term AT

i0
· ii in our grounded KCL equations in subblock form (16) to the right-hand side of

the equals sign. This yields an equivalent system of grounded KCL equations where the contributions of the
dc current sources are now expressed on the right-hand side, with

AT
r0 ·G ·Ar0 · u0 + AT

v0 · iv = −AT
i0 · ii. (18)

This is reminiscent of the well-known approach we take to discuss forced harmonic oscillators in which we
right the forcing function on the right-hand side of our governing equations. We have now properly accounted
for the effect of choosing a ground node.

We are now in a position to use matrix algebra quite creatively. Let’s look back at two important matrix
subblock equations. First, let’s recall the equation (13) to represent the voltage source contributions as
a general linear-systems problem. We also recall the grounded KCL equations (18) where we write the
contributions of the dc current source on the right-hand side. If we combine these two equations together
and write the result in matrix form, we produce a famous linear-systems problem in the form[

AT
r0 ·G ·Ar0 AT

v0

Av0 0

] [
u0

iv

]
=

[
−AT

i0
· ii

vv

]
.

This problem was first introduced into the literature under the name modified nodal analysis algorithm
from 1975 (CITE). In fact, many practicing engineers might stop here since this linear-systems problem
can be solved using a (sparse) LU factorization algorithm resulting in values for our desired vectors u0 and
iv. Another important note is that the modified nodal analysis algorithm enables us to handle much more
general systems than the ones considered in this paper. For example, by using this blocked partition matrix,
we can analyze systems with dependent current sources. However, as discussed before, the goal of this work
is to empower students in our classes to create a nonsingular linear-systems problem with a positive definite
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coefficient matrix. With a little bit of work, this linear systems problem can be written using a Gram matrix
in the form

AT · C ·A.

This is the same matrix structure that Strang describes so well (CITE). Moreover, there are interesting
connections between this coefficient matrix from modified nodal analysis and the corresponding matrices that
arise in conventional nodal analysis as described by Artice Davis. To see these connections and generalize
classical nodal analysis, we rely heavily on linear algebra.

Step 9: Identify essential nodes, nonessential nodes, and supernodes
Let’s push our analysis of this system further. Remember that we say that the datum node is our chosen
ground node. If the datum node is chosen within a generalized node, we set this node potential to zero and
all other node potentials in this generalized node are known as nonessential nodes. We say that the essential
nodes of our circuit are the ordinary, nondatum nodes. Each essential node yields a single, unknown,
independent node voltage potential. Finally, we refer to any generalized node that does not contain the
datum node as a supernode. For each supernode in our circuit, we need exactly one unknown, independent
node voltage potential. All other nodes within each supernode can be calculated using the node potential of
this independent node and the voltage source values within said node. Let’s use this refinement to classify
all nodes under the assumption that we choose node 7 as the datum node.

Choose u7 = 0
Variable Set of indices Cardinality

Datum node u7 Nd = {7} 1
Nonessential node u2 Nn = {2} nn = 1
Essential node u1, u3, u6 Ne = {1, 3, 6} ne = 3
Supernode 1 u4, u5 NS1 = {4, 5} ns1 = 2
Supernode 2 None NS2 = ∅ ns2 = 0

Table III: Classification of essential nodes, nonessential nodes,
and super nodes with choice of ground node 7

Step 10: Eliminate the node dependencies that arise due to the voltage sources
Let’s begin by further classifying the nodes of our circuit. We look back at the entire set of voltage source
KVL equations in node potential form (13). We can always transform these matrix equations into the
corresponding scalar equations by delineating the entry-by-entry definitions of each voltage drop calculation
with

Avg ug = vv ⇔
[

0 1 0 0 0 0 −1
0 0 0 1 −1 0 0

]


u1

u2

u3

u4

u5

u6

u7


=

[
vv1
vv2

]
⇔

[
vv1
vv2

]
=

[
u2 − u7

u4 − u5

]
(19)

This is a general linear-systems problem with a known right-hand side vector vv. By a famous theorem in
linear algebra, the general solution of this equation takes the form

ug = pg + Dvu

where pg is a particular solution to our GLSP and the columns of Dv are related to the Nul(Avg ). Below,
we show how to form these quantities.
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Step 10A: Determine the independent and dependent node voltage potentials

Since we chose node 7 as the datum node, we set u7 = 0 and we see that node 2 is nonessential with known
voltage value u2 = vv1 . We also know that each of the node voltage potentials u1, u3, and u6 at the essential
nodes are independent. Finally, we can choose one independent node potential from our single supernode.

Step 10B: Create a general solution to the entire set of voltage-source KVL equations

i. Suppose we say that u4 is our independent node value. Then, we want to solve for u5 in terms of u4.
In this case, we see that u5 = u4− vv2 . Using this replacement, we can set up a general solution to the
GLSP as follows 

u1

u2

u3

u4

u5

u6

u7


=



u1

vv1
u3

u4

u4 − vv2
u6

0


=



0
vv1
0
0
−vv2

0
0


︸ ︷︷ ︸

pg

+



1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Dv


u1

u3

u4

u6


︸ ︷︷ ︸

u

ii. Suppose, on the other hand, that we choose u5 is our independent node value. Then, we solve for u4

in terms of u5 with u4 = u5 + vv2 . Using this replacement, we can set up a general solution to the
GLSP as follows 

u1

u2

u3

u4

u5

u6

u7


=



u1

vv1
u3

u5 + vv2
u5

u6

0


=



0
vv1
0
vv2
0
0
0


︸ ︷︷ ︸

pg

+



1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Dv


u1

u3

u5

u6


︸ ︷︷ ︸

u

Step 10C: Create a general solution to the grounded set of voltage-source KVL equations

We can choose either options i. or ii. from Step 10B to rewrite the vector ug in it’s general form for the
solution of our GLSP equation (13). Let’s assume we choose i. and select node 4 as our independent voltage
source in the single supernode in this circuit. With this choice in mind, we recall that

u0 = DT
0 ug = DT

0 (pg + Dvu) = p0 + Du (20)

where the n0× 1 vector p0 = DT
0 pg and the grounded voltage source deflation matrix D ∈ Rn0×n is defined

as D = DT
0 Dv. The entry-by-entry definitions of each of these matrices is given as

0
vv1
0
0
−vv2

0


︸ ︷︷ ︸

p0

=


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


︸ ︷︷ ︸

DT
0



0
vv1
0
0
−vv2

0
0


︸ ︷︷ ︸

pg

and


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

D

=


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0


︸ ︷︷ ︸

DT
0



1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Dv
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Step 11: State the maximally deflated circuit equations
We are now in a position to make a fascinating claim. First, we notice that Avg Dv = 0 ∈ Rmv×n since

[
0 1 0 0 0 0 −1
0 0 0 1 −1 0 0

]
︸ ︷︷ ︸

Avg



1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Dv

=

[
0 0 0 0
0 0 0 0

]

Moreover, we claim that under modest assumptions that will likely be satisfied by all circuits used in practice,
the columns of the matrix D form a basis for the null space of the matrix Av0 with Av0

D = 0 ∈ Rmv×n. We
confirm this fact here by noting

[
0 1 0 0 0 0
0 0 0 1 −1 0

]
︸ ︷︷ ︸

Av0


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

D

=

[
0 0 0 0
0 0 0 0

]
(21)

Indeed, the matrix Av0 has a total of six columns, two of which are clearly pivot columns and the other four
of which must be nonpivot columns. But, the matrix D has four linearly independent columns in the null
space of Av0 and thus, by the fundamental theorem of linear algebra, must be a basis for this space.

Step 11A: Maximally deflate the incidence matrices

With this in mind, we can fully reduce our system. We recall our subblock equation (18) of the grounded
KCLs with nonzero current-source forcing term on the right-hand side whter the resistor current vector is
expressed in terms of the grounded node potential vector. Looking back at this equation, we now have an
alternative expression for u0 and a deflation matrix D that annihilates Av0 . Now we form our fully-deflated
submatrices starting with the resistor subblock first with

Ar = Ar0 D ∈ Rmr×n ⇔



1 0 0 0
−1 0 0 0
0 0 0 0
0 −1 0 0
0 1 0 −1
0 0 0 1
0 1 −1 0
0 0 1 −1


︸ ︷︷ ︸

Ar

=



1 0 0 0 0 0
−1 1 0 0 0 0
0 1 0 0 0 0
0 1 −1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 1
0 0 1 −1 0 0
0 0 0 0 1 −1


︸ ︷︷ ︸

Ar0


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

D

We’ve already shown that the columns of D send Av0 to zero with Av0 D = 0. Finally, we focus on deflating
the current source subblock with

Ai = Ai0 D ∈ Rmi×n ⇔
[

0 0 1 0
0 0 −1 0

]
︸ ︷︷ ︸

Ai

=
[

0 −1 0 1 0 0
0 0 0 0 −1 0

]
︸ ︷︷ ︸

Ai0


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

D
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Step 11B: Create the grounded and deactivated nodal equation in nonsingular form

We now use these matrices to simplify our circuit equations. If we multiply the compact KCL equation (18)
on the left by the matrix DT , we annihilate the term involving the voltage-source subblock AT

v0 , yielding

AT
r GAr0 u0 = −AT

i ii

Now we can substitute the expanded version of vector u0 into our equation to produce

AT
r GAr0 (p0 + Du) = −AT

i ii

If we set f = AT
i ii and b = −Ar0 p0, we can use this simplification to system as

AT
r GAr u = AT

r Gb− f

where K = AT
r GAr ∈ Rn×n and f ∈ Rn. This is now completely equilibrium equation framework espoused

by Strang. Moreover, under this construction, the matrix Ar has full column rank. In particular, we note

K =

 1 −1 0 0 0 0 0 0
0 0 0 −1 1 0 1 0
0 0 0 0 0 0 −1 1
0 0 0 0 −1 1 0 −1


︸ ︷︷ ︸

AT
r



g1 0 0 0 0 0 0 0
0 g2 0 0 0 0 0 0
0 0 g3 0 0 0 0 0
0 0 0 g4 0 0 0 0
0 0 0 0 g5 0 0 0
0 0 0 0 0 g6 0 0
0 0 0 0 0 0 g7 0
0 0 0 0 0 0 0 g8


︸ ︷︷ ︸

G



1 0 0 0
−1 0 0 0
0 0 0 0
0 −1 0 0
0 1 0 −1
0 0 0 1
0 1 −1 0
0 0 1 −1


︸ ︷︷ ︸

Ar

=

 g1 −g2 0 0 0 0 0 0
0 0 0 −g4 −g5 0 g7 0
0 0 0 0 0 0 −g7 g8
0 0 0 0 −g5 g6 0 −g8


︸ ︷︷ ︸

AT
r G



1 0 0 0
−1 0 0 0
0 0 0 0
0 −1 0 0
0 1 0 −1
0 0 0 1
0 1 −1 0
0 0 1 −1


︸ ︷︷ ︸

Ar

=

 g1 + g2 0 0 0
0 g4 + g5 + g7 −g7 −g5
0 −g7 g7 + g8 −g8
0 −g5 −g8 g5 + g6 + g8


︸ ︷︷ ︸

K

The forcing terms on the right-hand side contain information about both the current sources and the effect
of the voltage sources on the system. In particular, we notice that

 0
0

ii1 − ii2
0


︸ ︷︷ ︸

f

=

 0 0
0 0
1 −1
0 0


︸ ︷︷ ︸

Ai

[
ii1
ii2

]
︸ ︷︷ ︸
ii

We also see that the voltage sources effect the system with


0
−vv1
−vv1
−vv1

0
0
0

vv2


︸ ︷︷ ︸

b

= −



1 0 0 0 0 0
−1 1 0 0 0 0
0 1 0 0 0 0
0 1 −1 0 0 0
0 0 1 0 0 −1
0 0 0 0 0 1
0 0 1 −1 0 0
0 0 0 0 1 −1


︸ ︷︷ ︸

Ar0


0

vv1
0
0

−vv2
0


︸ ︷︷ ︸

p0

.
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To calculate the resulting currents, we see that


g2 vv1
g4 vv1
g8 vv2

−g8 vv2


︸ ︷︷ ︸
AT

r Gb

=

 1 −1 0 0 0 0 0 0
0 0 0 −1 1 0 1 0
0 0 0 0 0 0 −1 1
0 0 0 0 −1 1 0 −1


︸ ︷︷ ︸

AT
r



g1 0 0 0 0 0 0 0
0 g2 0 0 0 0 0 0
0 0 g3 0 0 0 0 0
0 0 0 g4 0 0 0 0
0 0 0 0 g5 0 0 0
0 0 0 0 0 g6 0 0
0 0 0 0 0 0 g7 0
0 0 0 0 0 0 0 g8


︸ ︷︷ ︸

G



0
−vv1
−vv1
−vv1

0
0
0

vv2


︸ ︷︷ ︸

b

Combining all of these results together, we produce the same system as espoused by the classical nodal
analysis algorithm with

 g1 + g2 0 0 0
0 g4 + g5 + g7 −g7 −g5
0 −g7 g7 + g8 −g8
0 −g5 −g8 g5 + g6 + g8


︸ ︷︷ ︸

K

u1

u3

u4

u6


︸ ︷︷ ︸

u

=


g2 vv1
g4 vv1
g8 vv2

−g8 vv2


︸ ︷︷ ︸
AT

r Gb

−
 0

0
ii1 − ii2

0


︸ ︷︷ ︸

f

We can transform this equation into numerical form by substituting the exact values for that circuit com-
ponents designated in figure 1 yielding the system

 2 0 0 0
0 3 −1 −1
0 −1 2 −1
0 −1 −1 3


︸ ︷︷ ︸

K

u1

u3

u4

u6


︸ ︷︷ ︸

u

=

 5
5
5

−5


︸ ︷︷ ︸

AT
r Gb−f

Step 12: Solve the linear-algebraic nodal analysis equations
Now we can solve our resulting 4×4 system using any method we’d like. In practice, I suggest using MATLAB
since the whole point of this exercise is to set ourselves up to take advantage of computer algorithms. In fact,
on the companion website for this paper, readers can find a MATLAB script to solve this exact problem.
However, since this example write up is dedicated to learners who may have relatively little coding experience,
we include the entire solution process for completeness and ease of reference. We begin by transforming our
matrix into upper-triangular form using Gauss transformations:
 2 0 0 0

0 3 −1 −1
0 −1 2 −1
0 −1 −1 3


︸ ︷︷ ︸

K

u1

u3

u4

u6


︸ ︷︷ ︸

u

=

 5
5
5

−5


︸ ︷︷ ︸

AT
r Gb−f

⇔
 1 0 0 0

0 1 0 0
0 1/3 1 0
0 1/3 0 1


︸ ︷︷ ︸

L1

 2 0 0 0
0 3 −1 −1
0 −1 2 −1
0 −1 −1 3


︸ ︷︷ ︸

K

u1

u3

u4

u6


︸ ︷︷ ︸

u

=

 1 0 0 0
0 1 0 0
0 1/3 1 0
0 1/3 0 1


︸ ︷︷ ︸

L1

 5
5
5

−5


︸ ︷︷ ︸

AT
r Gb−f

⇔
 1 0 0 0

0 1 0 0
0 0 1 0
0 0 4

5 1


︸ ︷︷ ︸

L2

 2 0 0 0
0 3 −1 −1
0 0 5/3 −4/3
0 0 −4/3 8/3


︸ ︷︷ ︸

L1 K

u1

u3

u4

u6


︸ ︷︷ ︸

u

=

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 4

5 1


︸ ︷︷ ︸

L2

 5
5

20/3
−10/3


︸ ︷︷ ︸

L1 (AT
r Gb−f)

⇔
 2 0 0 0

0 3 −1 −1
0 0 5/3 −4/3
0 0 0 8/5


︸ ︷︷ ︸

L2 L1 K

u1

u3

u4

u6


︸ ︷︷ ︸

u

=

 5
5

20/3
2


︸ ︷︷ ︸

L2 L1 (AT
r Gb−f)
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Using backward substitution, we see that

u =


u1

u3

u4

u6

 =


2.50
3.75
5.00
1.25



Step 13: Completely describe electrical behavior of circuit
In this case, we choose to solve this problem using left multiplication by elementary matrices to transform
our system into an equivalent linear-systems problem in upper triangular form. We then apply backward
substitution to find the values of the independent voltage potentials stored in u. Finally, we use our general
linear-systems solution equation (20) to find all entries of the vector u0.

Step 13A: Find all the node voltage potentials

Then, using our solution to the grounded linear-systems problem, we have
u1

u2

u3

u4

u5

u6


︸ ︷︷ ︸

u0

=


0
vv1
0
0
−vv2

0


︸ ︷︷ ︸

p0

+


1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

D


u1

u3

u4

u6


︸ ︷︷ ︸

u

=


0
5
0
0
−5

0


︸ ︷︷ ︸

p0

+


2.50
0.00
3.75
5.00
5.00
1.25


︸ ︷︷ ︸

D u

=


2.50
5.00
3.75
5.00
0.00
1.25



Step 13B: Calculate any desired circuit variable values

One of the main uses of circuit analysis to to focus on a single circuit variable and report the value of this
variable to any interested party when desired. The moment we solve for our given independent node voltage
potentials, we claim that we can report the value of any variable using matrix-vector multiplication along
with some trivial analysis. For example, suppose that we want to find the current flowing through any
resistor in the entire circuit. We can do this immediately using the the matrix version of Ohm’s law equation
in conductance form with

ir = Gvr

The only other unknown quantities are the voltages across the current sources and the currents running
through the voltage sources. The voltage drops across the current sources result from the current source
subblock of the entires set of KVLs with

vi = Ai0u0

On the other hand, the currents running through the voltage sources pose a slightly more subtle problem.
But we have is our KCL equation

AT
v0 · iv = AT

r0 ·G · b−AT
i0 · ii.

The left-hand side includes two unknown variables while the right-hand side is completely determined by
our previously stated constants.
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Step 14: Verify by measuring the node voltage potentials on the real circuit
Measure the node voltage potentials at all nodes in the circuit and record the data in the table below.

Node Measured Modeled
Variable value (V) value (V)

u1 −2.497 2.50
u2 −4.98 5.00
u3 −3.728 3.75
u4 −4.95 5.00
u5 −0.003 0.00
u6 −1.241 1.25
u7 −0.000 0.00
Table III: Model verification

For practically-minded readers, a few notes about measurements are in order. If we were to measure
the values of these variables on a physical circuit, we hold the black probe of the voltmeter to the ground
node. Then we apply the red probe to each of the other nodes on the circuit. We would read the associated
potentials using our voltmeter and record the data in a 7 × 1 vector. The d = 7th entry of this vector is
assumed to be zero since this the reference voltage value against which all other potentials are measured.
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