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Linear algebraic nodal analysis (LANA) algorithm variable guide
Jeffrey A. Anderson

Choosing names and notation for mathematical variables is an art. Good notation begets lucid thinking.
Bad notation causes unnecessary confusion. This document provides more information and insights about
the variables and equations that make up linear algebraic nodal analysis. In some cases, we explore possible
noun phrases to refer to relevant equations in written or spoken format. The hope is to improve your capacity
to use the LANA algorithm to describe the behavior of electric circuits and set a foundation for you to use
linear algebra in engineering contexts.

Input: Ideal circuit diagrams labels
The LANA algorithm is designed to provide an authentic modeling experience for anyone interested in
learning how to apply linear algebra in engineering contexts. The input to this algorithm is a complete
description of an electric circuit that includes resistors along with dc voltage and current sources. At the
introductory level, this input usually comes in the form of an ideal circuit schematic. Below are two resources
that suggest best practices to draw and label these types of circuit diagrams:

� Rules and guidelines for drawing good schematics from the Electronics Stack Exchange

� Guidelines for Drawing Schematics by Tim J. Sobering

When drawing an ideal circuit diagram, we define and label each element using a letter and number
combination (eg. R1, V3, I2). We use uppercase English letters to indicate the type of component while
the corresponding number enumerates each individual element of this type in the circuit. This convention
follows from a similar practice of stamping each ideal element in Computer-Aided Design (CAD) programs.
We use the standard letter codes for resistors, voltage sources, and current sources, seen in Table 1 below.

Letter Code Element Type
R Resistor
V Voltage Source
I Current Source

Table 1: Letters for component labels

To ensure readability and ease of reference, each component designator appears next to the associated
component. We dedicate the use of both the lower- and upper-case English letters R, V, and I to represent
quantities related to resistance, voltage, and current, respectively. Table 2 below provides examples of the
element labels used in the input to the LANA algorithm.

Element label Description and notes

R3 Element label or element name for resistor 3 in an ideal circuit schematic.

V1 Element label or element name for dc voltage source 1 in an ideal circuit schematic.

I2 Element label or element name for dc current source 2 in an ideal circuit schematic.

Table 2: Example element labels for an ideal schematic
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Step 1: Identify and label the entire set of nodes of our circuit
There are two main goals for labeling each node. First we want a unique identifier for each node and second
we want to count the total number of nodes. In other words, we want to create a bijection between the
circuit nodes and a set of natural numbers. In LANA, we do this by labeling the nodes with natural numbers
1, 2, ..., ng, where ng is the total number of nodes in the circuit. This avoids the need to use lowercase letters
to refer to the nodes and gets right to the point. Each node label is identical to its corresponding index.

There is one possible downside to this approach. If we’re not careful, we can cause confusion when
referring to other integers. The sentence

“Edge e1 goes out of node 2 and into node 1.”

does a much better job of referring to the nodes in context than the less-clear statement

“Edge e1 goes out of 2 and into 1.”

The nonnegative integers play many roles throughout this work so we must be extra careful to refer to each
node in the proper context. Assuming we so, labeling the nodes with natural numbers is simple and effective.

Step 2A: Track the dimensions of key features in our circuit

The digraph model of the electric circuit consists of two sets: the set of nodes N and the set of edges E . We
use math calligraphy typeface to represent all sets that describe directed graphs, as shown in Table 3 below.

Variable Description and notes

G Our digraph model of the electric circuit with G = (N , E) .

N The set of nodes N = {1, 2, ..., ng} ⊂ N. We might say these are the set of nodes that define
the digraph G or the set of circuit nodes.

E The set of edges E ⊂ N ×N . Each edge is an ordered pair of nodes. We call the first coordinate
of an edge the initial node and the second coordinate the terminal node. Each directed edge
points out of the initial node into the terminal node. For circuit applications, we say that no
self-loops are allowed meaning that the initial and terminal nodes cannot be the same.

Table 3: The sets that describe our directed graph model of the circuit.

Throughout this work, we dedicate the lower case letter n to count the cardinality of special subsets of
nodes. Table 4 below highlights variables that rely on the lower case letter n.

Variable Element Type
ng Total number of nodes (including the ground node).
nf Number of free variables in the voltage-source linear-systems problem.
n Minimal number of independent nodes needed to analyze circuits.

Table 4: Letters for cardinality for sets of nodes

Notice the special use of subscripts to differentiate between each variable in Table 4. These subscripts are
designed as memory tools to call into mind the role of each specific counter, as highlighted in Table 5 below.

Subscript Significance
g Tracks when the ground node is included (g means ground is included).
f Refers to free variables from the voltage-source linear-systems problem.

No subscript Indicates that all constraints have been eliminated.
Table 5: Letters for cardinality for sets of nodes
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We use the lower case letter m counts the cardinality (as a nonnegative integer) of special subsets of
edges. Since we establish a bijection between edges of our digraph model and circuit elements, the letter m
also counts subsets of circuit components.

The central reason why we choose letters m and n to count edges and nodes comes from conventions
in applied linear algebra. Linear algebraists love to write matrix dimensions in the form m × n where
m,n ∈ N. Lloyd Trefethen and David Bau have a brief description of this convention on page 9 of their
famous Numerical Linear Algebra textbook in their section titled “A note on m and n.” With this conven-
tion in mind, Table 5 below highlights all of the dimensions used to describe the entire incidence matrix.

Variable Description and notes

ng This positive integer counts the total number of nodes in the circuit, including the ground
node. In electrical engineering, it is sometimes ambiguous if a node count includes the ground
node or not. The subscript g makes it abundantly clear that the ground node is included in
this count. When the subscript g is present on the integer n, we are counting all nodes in the
circuit, including the ground node

mr This positive integer represents the number of resistors in the circuit.

mv This nonnegative integer represents the number of dc voltage sources in the circuit.

mi This nonnegative integer represents the number of dc current sources in the circuit.

m This positive integer represents the total number of circuit elements with

m = mr +mv +mi.

We might also say that this counter represents the total number of edges in the digraph model
of our circuit or the cardinality of the edge set E .

Table 5: Dimensions for node and edge sets for the entire incidence matrix

Step 2B: Orient and enumerate the edges of the digraph

Replace each circuit element with an edge of our digraph. For edges associated with current sources, we
orient this edge in the same direction as the flow of current in that source. For edges of our graph cor-
responding to voltage sources, we orient these edges from the positive “+” lead to the negative “-” lead of
the associated sources. Finally, we assign arbitrary directions to all edges corresponding to the resistors in
our circuit. In addition to orienting each edge according to the rules outlined above, we also choose a very
special enumeration scheme for the edges of our circuit. First we count and label all edges corresponding to
resistors as edges e1, e2, ..., emr . Next, we continue our count by labeling the edges corresponding to voltage
sources, yielding edges emr+1, ..., emr+mv . Finally, we enumerate our edges corresponding to current sources
as emr+mv+1, ..., em.
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Step 3: Create all circuit matrices
For all circuit equations described below, we follow the well-established convention that boldface, lowercase
English letters represent vectors while italicized lowercase letters represent scalar-valued entries within these
vectors. Uppercase English letters represent matrices.

Step 3A: Create the entire incidence matrix

We define the entire incidence matrix with the rows corresponding to edges and the columns corresponding
to the nodes. The reason we choose this orientation is to describe nodal analysis using a larger equilibrium
equation framework espoused by Gilbert Strang in Chapter 2 of his Introduction to Applied Mathematics
textbook. This framework suggests the structure ATCA as the output to our nodal analysis algorithm.
If we chose to map rows to nodes and columns to edges, we end up with a matrix structure in the form
ACAT . Of course, this alternative approach is completely valid but LANA focuses on illustrating the power
in the structure ATCA. Thus we associate edges with rows and nodes with columns. Below are all incidence
matrices used to describe the directed graph model from step 2.

Variable name Description and notes

Ag This entire incidence matrix has m rows and ng columns. I might also call this the
incidence matrix encoding the circuit’s digraph prior to eliminating the ground node.

Arg The resistor subblock of the entire incidence matrix or the entire resistor subblock, with
Arg ∈ Rmr×ng .

Avg The entire voltage source subblock or the voltage-source subblock of the entire incidence
matrix with Avg ∈ Rmv×ng . Notice that mv might be equal to zero if no voltage sources
are attached to our circuit. In this case, this subblock is empty.

Aig The entire current source subblock or the current-source subblock of the entire incidence
matrix, with Aig ∈ Rmi×ng . Since mi might be equal to zero if no current sources are
attached, this subblock may not exist.

Table 6: The entire incidence matrix and it’s subblocks

Notes on index variables for the incidence matrices

When referring to specific rows and columns of these incidence matrices, we use index variables. We dedicate
the symbol j ∈ N to refer rows and letter k to specify nodes. We do not use the letter i as an index. In
electrical engineering, the letter i refers to current. There is a valid argument that the letter j may also
cause some confusion since many electrical engineers set j =

√
−1. However, since LANA focuses on DC

analysis of circuits containing only resistors and dc power sources, we need not dip into complex analysis.
Moreover, even if we do decide to use complex numbers, we can specifically reference the use of the letter j
as an index variable wherever it appears.
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Step 3B: Create the node voltage potential vector

Table 7 below presents the variables used to describe the entire set of node voltage potentials in the cir-
cuit. In steps 5 and 6 of the LANA algorithm, we impose constrains on some of these variables and re-
duce this list to a minimal set of potential variables from which all other circuit values can be calculated.

Variable name Description and notes

ug The entire list of node voltage potentials of the circuit with ug ∈ Rng . This list of voltage
potentials assumes we have not yet chosen the ground node.

uk The voltage potential of the kth node, where uk = Entryk(ug) for k ∈ {1, 2, ..., ng}.

Table 7: The node voltage potential variables for the circuit

Step 3C: Create the voltage drop vector

Variable name Description and notes

v The vector of voltage drops across each element with v ∈ Rm. We might also refer to
this as the voltage-drop vector.

vr The resistor voltage-drop vector or the resistor subblock of the vector of voltage drops,
with vr ∈ Rmr .

vv The voltage-source voltage-drop vector where vv ∈ Rmv . We might also name this vector
the voltage-source subblock of the vector of voltage drops. Assuming mv > 0, this vector
has scalar-valued entries given by vvj = Entryj (vv) for j = 1, ...,mv.

vvj Assuming mv ≥ 1, we see vvj = Entryj(vv) for j ∈ {1, ...,mv}. The value of vvj
is the

assigned value of the circuit element Vj which can be read from the dc voltage sources.
We should explicitly note that these values are KNOWN constants.

vi The current-source voltage-drop vector has the property that vi ∈ Rmi . Another way to
refer to this vector might be to use the phrase the current-source subblock of the vector
of voltage drops.

Table 8: Voltage-drop variables for each element in the circuit.
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Step 3D: Create the current vector

Variable Variable name, description and notes

i The current vector or the vector of currents through each element with i ∈ Rm.

ir We have ir ∈ Rmr and we might say this is the resistor current vector, the resistor subblock of
the vector of currents through each element, or the current vector for the resistors.

iv The voltage-source current vector, where iv ∈ Rmv , also referred to as the voltage-source
subblock of the current vector.

ii The current-source current vector has the property that ii ∈ Rmi . Another way to refer to
this vector might be to use the phrase the current-source subblock of the vector of currents
through each element.

iij Assuming mi ≥ 1, we see iij = Entryj(ii) for j ∈ {1, ...,mi}. The value of iij is the assigned
value of the circuit element Ij which can be read from the dc current sources. We should
explicitly note that these values are KNOWN constants.

Table 9: Current variables for each element in the circuit.

Step 4A: State the entire set of Kirchhoff’s current laws (KCLs)

Equation Equation name, description, and notes

AT
g i = 0 The entire set of Kirchhoff’s current law equations in matrix

form with zero right-hand side. We might also refer to this
equation as the complete list of KCLs with right-hand side
equal to zero.

AT
rg ir +AT

vg iv = −AT
ig
· ii. The subblock form of the entire set of KCLs with nonzero

current-source forcing term on right-hand side.

Table 10: Matrix equations to express KCL equations.

Step 4B: State the brach constitutive relations (BCRs)

Branch constitutive relations (BCRs) are equations that relate the voltage drop across to the current running
through a particular circuit element. For the types of circuit’s we study in this work, the only type of BCRs
are associated with the resistors in the circuit and are known as Ohm’s law. We can track two different
versions of Ohm’s law, as seen in Table 11 below.
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Equation Equation name, description, and notes

vr = R ir The resistance form of Ohm’s law equations for all resistors
in circuit. Also known as the matrix version of Ohm’s law
in resistance form.

ir = Gvr The conductance form of Ohm’s law equations for all resis-
tors in circuit. Also known as the matrix version of Ohm’s
law in conductance form.

Table 11: Matrix equations to express Ohm’s law.

The individual entries of matrix R come from the assigned values of the resistors, as seen in Table 12 below.

Variable name Description and notes

rj The assigned resistance value associated with the jth resistor Rj in the circuit for
j = 1, 2, ...,mr. This is also known as the resistance of the jth resistor.

R This mr ×mr diagonal matrix, known as the resistance matrix, stores the resistances of
all resistors as the diagonal elements with

R =


r1 0 · · · 0

0 r2
. . .

...
...

. . . . . . 0
0 · · · 0 rmr

 .

G The diagonal matrix G ∈ Rmr×mr is defined as G = R−1. The entry-by-entry definition
is given as

G =


g1 0 · · · 0

0 g2
. . .

...
...

. . . . . . 0
0 · · · 0 gmr


where gj =

1
rj

for j ∈ {1, 2, ...,mr}. This is also called the conductance matrix.

Table 12: Resistor and conductance variables in Ohm’s law equations.

Note about conductance variables

A natural thought for mathematicians not trained as electrical engineers is to assume we should name the
conductance matrix C instead of G. The word conductance starts with the letter “C” and the equilibrium
equation framework suggested by Strang also includes matrix C. While this is a great thought, it doesn’t
stand up to the test of making our math as clear as possible for the end users. In electrical engineering, the
letter “C” is used for capacitors. Following conventions in electrical engineering, we use the variable gj to
describe the conductance of the jth resistor.

c© Jeffrey A. Anderson 7 of 12

http://www.appliedlinearalgebra.com


www.appliedlinearalgebra.com Version: 10/26/2021 at 11:32:53

Step 4C: State the entire set of Kirchhoff’s voltage laws (KVLs)

In stating Kirchhoff’s voltage laws (KVLs), we choose a convention that is specialized to CAD program-
ming for on circuit simulation. In contrast, most introductory physics and engineering course present KVL
equations in two forms. The first form of KVLs is written below.

The path form of Kirchhoff’s voltage law states that if two paths in a circuit have the same initial
nodes and the same terminal nodes, then the sums of the voltage drops along the two paths must
be the same.

The other way to write Kirchhoff voltage law focuses on loops instead of paths and reads as follows:

The loop form of Kirchhoff’s voltage law states that the sum of all voltage drops around any
loop in a circuit must be zero. Alternatively, we might also say that the sum of all voltage rises
around any loop in a circuit must be zero.

In the LANA algorithm, we use a more general version of Kirchhoff’s voltage laws given as follows:

The node-potential form of Kirchhoff’s voltage law states that the voltage drop across any two-
terminal element of a circuit is the difference in the node voltage potentials at each lead.

By combining this node-potential KVLs with circuit matrices from graph theory, we can produce the other
two forms of KVLs as a consequent of this node-potential form. Table 13 below shows how we write the
KVLs in node-potential form using the matrices we generated in step 3 of the LANA algorithm.

Equation Equation name, description, and notes

Ag ug = v The entire set of Kirchhoff’s voltage law equations in node-
potential form. We might also refer to this equation as the
the complete list of KVLs in node-potential form.

Arg ug = vr The entire set of resistor KVLs. We might also call the
equation as the resistor subblock of the entire set of KVLs.
We stay away from using the terse and less-accurate phrase
resistor KVLs since the LANA algorithm distinguishes be-
tween complete, grounded, and deflated KVL equations, as
discussed below.

Avg ug = vv The entire set of voltage-source KVL equations or the
voltage-source subblock of the entire set of KVLs. The
right-hand side of this equation contains known voltage val-
ues and this forms the entire voltage-source general linear-
systems problem.

Aig ug = vi The entire set of current-source KVL equations. We can
also refer to this as the current-source subblock of the entire
set of KVLs.

Table 13: Matrix equations to express KVLs in node-potential form.
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Step 5: Identify ordinary and generalized nodes
We define a generalized node to be any set of nodes connected by a path of voltage sources. For each
generalized node, we have only one independent node voltage potential. Any node to which no voltage
source is connected is called an ordinary node. We use the deactivated circuit heuristic to identify ordinary
and generalized nodes.

In the deactivated circuit heuristic, we deactivate the voltage and current sources in the circuit by setting
their values to zero. This is equivalent to drawing a new deactivated resistor network in which we replace
each voltage source with a short circuit and each current source with an open circuit. When we deactivate
the circuit in this way, the nodes in each generalized node meld together. The node potential variables for
all nodes inside a generalized node are constrained by the placement of the voltage sources. Thus, the values
of these variables are not independent from each other.

Step 6: Create a minimal set of independent node potentials
The LANA algorithm uses linear algebra to reduce the vector ug to a minimal set of independent node
variables from which all other quantities in the circuit can be calculated. To achieve this reduction, we
partition the entries of ug into two lists. The first list of constrained variables includes one node potential
variable for each voltage source and exactly one additional variable for our chosen ground node. The
second list of independent variables are the chosen node voltage potentials that remain after eliminating the
constrained quantities.

Step 6A: Impose one constraint for each voltage source

To impose the (mv + 1) constraints, we look at two features of our modeling problem. The first set of
constraints is encoded in the element-specific KVLs from step 4C. Specifically, the voltage-source KVLs
form a linear-systems problem

Avg ug = vv

since the vector vv on the right-hand side has known entries. This voltage source general linear-systems
problem encodes mv restrictions amongst the entries of ug. The second type of constraint relates to our
choice of ground node. To ground our circuit, we pick a reference node and set one entry of the vector ug to
zero. By partitioning the entries of ug in this way, we create a minimal list u ∈ Rn of independent node
variables, where n = (ng −mv − 1). To reduce ug down to u, we begin with the voltage-source constraints
and then we ground the circuit.

Equation Equation name, description, and notes

Avg ug = vv In this voltage-source subblock of the entire set of KVLs,
we notice that the right-hand side of this equation contains
known voltage values. We recognize this as the voltage-
source general linear-systems problem. We can produce a
complete solution to this problem to impose mv constraints
amongst the entries of ug.

ug = pg + Zvg uf The complete solution to the voltage-source KVLs.

Table 14: Matrix equations to express the voltage-source constraints.
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Each variable in the complete solution to the voltage-source general linear-systems problem has special
meaning, as show in Table 15 below.

Variable Variable name, description and notes

pg A particular solution to the voltage-source KVLs where Avg pg = vv.

Zvg The voltage-source deactivation matrix of size ng × nf . The columns of this matrix form a
basis for Nul(Avg ).

nf The number of free variables from the voltage-source KVLs, where nf = ng −mv.

uf The vector of free variables from the voltage-source KVL equations.

Table 15: Variables to express the voltage-source constraints.

Step 6B: Impose a single constraint for the ground node

To impose the final constraint, we choose a single ground node from the remaining (ng −mv) free variables
and shift the corresponding entry of the vector uf from unknown to known. This permits a dimension
reduction realized using multiplication with a matrix Df0 ∈ Rnf×n. The matrix Df0 is formed by taking
the nf × nf identity matrix and deleting the column corresponding to the chosen ground node where

n = nf − 1 = (ng −mv)− 1

represents the minimum number of node voltage potentials needed to completely analyze the circuit. We
use the deflation matrix Df0 to define

u = DT
f0 uf and Z = Zvg Df0 .

Step 6C: Combine the constraints together

We then form the completely reduced solution to the voltage-source KVLs given by

ug = pg + Zu

where the columns of Z ∈ Rng×n are in Nul(Avg ) and the vector u ∈ Rn stores the minimal list of independent
variables needed to fully analyze the circuit. We sum this up in Table 16 below.

Equation Equation name, description, and notes

ug = pg + Z u Completely reduced solution to voltage-source KVLs.

u = DT
f0
uf The vector storing a minimal set of independent node volt-

age potentials needed to analyze the entire circuit.

Z = Zvg Df0 Grounded voltage-source deactivation matrix imposes the
(mv +1) constraints and produce equations in terms of our
minimal list of independent node potential variables.

Table 16: Variables to express the voltage-source constraints.
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Step 7: State and solve the equilibrium equation for the circuit

Variable name Description and notes

A complete reduced incidence matrix of size m× n. This describes a digraph model of the
deactivated resistor network. We form this grounded and deactivated incidence matrix
by multiplying Ag on the right by the voltage-source deflation matrix Z with A = Ag Z.

Ar Thismr×nmatrix corresponds to the resistor subblock of the completely reducedincidence
matrix with Ar = Arg Z. We might also refer to this as the incidence matrix model of
the deactivated resistor network.

Av This mv×n matrix corresponds to the voltage-source subblock of the maximally deflated
incidence matrix with Av = Avg Z. By construction, the columns of Z are in the null
space of Avg and we immediately conclude that

Av = 0 ∈ Rmv×n.

In transpose form, we have

AT
v = ZTAT

vg = 0 ∈ Rn×mv .

In other words, this matrix has all zero entries. We are naming this matrix because it’s
worth noting that the zero entries result from our construction of the matrix Z.

Ai This mi×n matrix corresponds to the current-source subblock of the maximally deflated
incidence matrix with Ai = Aig Z.

Table 17: Deactivated incidence matrices
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Equation Equation name, description, and notes

K = AT
r ·G ·Ar The LANA coefficient matrix also referred to as a stiffness

matrix associated with our original circuit.

K · u = AT
r ·G · b− f The linear-algebraic nodal analysis equation. This is in the

exact form espoused by Strang on in box 2E on page 112
of his Introduction to Applied Mathematics textbook. The
coefficient matrix K is nonsingular and positive definite.

f = AT
i · ii. The current source forcing terms on the nodes of the cir-

cuit. In this case, we use same notation outlined in Strang’s
Introduction to Applied Mathematics on page 112.

b = −Arg pg The voltage-source forcing terms at the nodes of the cir-
cuit. The negative sign matches the notation as outlined in
Strang’s Introduction to Applied Mathematics on page 112.

Table 18: The Linear Algebraic Nodal Analysis Equation
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