
MATH 1C: EXAM 2, V9A c© Jeffrey A. Anderson ANSWER KEY

For problems 1 - 4, let f : D ⊆ R2 −→ R be a two-variable function with explicit representation z = f(x, y).
Let A

(
a, b, f(a, b)

)
be a point on the surface

Sf = {(x, y, z) : (x, y) ∈ D and z = f(x, y)}.

Let u = 〈u1, u2〉 be a unit vector in the domain of function f .

1. (6 points) Please derive the limit definition of the directional derivative from first principles. If you’re
confused where to start, please follow the 5 steps process to constructing a derivative that we discussed
in our Lesson 11 videos.

Solution: Recall the 5 step process for constructing derivative included each of the following:

I. Graph a curve C

In order to create the curve on which we will plot our tangent line, we begin with
the graph of the surface defined by the explicit equation z = f(x, y). To create the
curve C along the surface, we restrict our input points in the domain to move along
the line

r(t) = r0 + t · u,

= 〈a, b〉+ t 〈u1, u2〉 ,

= 〈a+ tu1, b+ tu2〉 ,

= 〈x(t), y(t)〉 ,

where x(h) = a + tu1 and y(h) = b + tu2. This is equivalent to intersecting the
surface z = f(x, y) with a plane through the point A

(
a, b, f(a, b)

)
with normal

vector n = 〈−u2, u1, 0〉. This results in a single-variable function given by

g(t) = f(x(t), y(t)) = f
(
a+ tu1, b+ tu2

)
.

Below, we visualize this curve and the points from step 2 of this process.

Figure 1A: Restricted domain inputs Figure 1B: Resulting curve on surface



Solution:

II. Find two points on the curve and draw a secant line between these two points.

We now find two points on the curve C. Since we will be finding the derivative at
the point A

(
a, b, f(a, b)

)
, we start by noticing that the output value on the surface

at this point is given by

g(0) = f(x(0), y(0)) = f(a, b).

If we assume that h ∈ R with h 6= 0, we can get that output value of another point
on the curve C by evaluating

g(h) = f(x(h), y(h)) = f
(
a+ hu1, b+ hu2

)
This yields two points A and B on the curve C with coordinates are given by

A
(
a, b, f(a, b)

)
and B

(
a+ hu1, b+ hu2, f(a+ hu1, b+ hu2)

)
As discussed before, we see the two points on the surface in the visual below:

Math 1C: Exam 2, V9A c© Jeffrey A. Anderson Page 2 of 10



Solution:

III. Measure the slope of the secant line.

To measure the slope mAB of the secant line through the points A and B, recall
that we say that the slope

mAB =
change in output

signed ‘distance’ traveled in input

We can calculate the change in output values on the surface to be given by

change in output = g(h)− g(0) = f
(
a+ hu1, b+ hu2

)
− f(a, b).

On the other hand, the signed ’distance’ traveled in the input requires some deeper
thought. To this end, consider the diagram below:

When moving from point P0 to point P in the domain, we notice that the scalar h
encodes both the magnitude and orientation of this movement. In other words, we
see that the nonnegative distance traveled when moving from point P0 to point P
is given by the magnitude:∥∥∥−−→P0P

∥∥∥
2

= ‖h · 〈u1, u2〉‖2 = |h| · ‖u‖2 = |h|.

The fact that the length of this vector is the value of the scalar h directly results
from our assumption that u is a unit vector. To get the signed ‘distance’ traveled,
we remember that in producing the point P , we only required that h 6= 0. This
corresponds to two scenarios: a positive scalar h > 0 or a negative scalar h > 0. In
each case, the signed ‘distance’ will just be the value of h. This results in a slope of
the secant line through the points A and B given by

mAB =
g(h)− g(0)

h
=
f
(
a+ hu1, b+ hu2

)
− f(a, b)

h

IV. Transform the secant line into a tangent line using a limit.

V. Construct the “derivative” as the slope of a tangent line.

We recall that we can force point B toward point A by forcing point P to point P0

in the domain. In particular, we can measure the slope of the tangent line between
these points as the following limit:

Duf(a, b) = lim
h→0

f
(
a+ hu1, b+ hu2

)
− f(a, b)

h
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2. (4 points) Using the limit definition for the directional derivative of f in the direction of u at the point
(a, b) that you derived in problem 1 above, show how to construct a composite function g(t). This single
variable function should have the property that the derivative g′(t) is the same value as the limit we
constructed to compute the directional derivative in problem 1.

3. (4 points) Derive the dot product formula for the directional derivative. Be sure to specifically refer to
the the function g(t) from problem 2 above along with the multivariable chain rule with two interme-
diate variables and one independent variables. When appropriate, please explicitly state and use the
multivariable chain rule in your work. Also, make sure to explain the value of t that you use to take the
ordinary derivative in this derivation.

Solution: By construction, we see that the limit definition of the directional derivative in part A
above is given as

Duf(a, b) = lim
h→0

f
(
a+ hu1, b+ hu2

)
− f(a, b)

h

= lim
h→0

g(0 + h)− g(0)

h

Using ordinary derivative notation, we see this is equivalent to taking the ordinary derivative of the
single-variable function

g′(0) =
d

dt

[
g(t)

]∣∣∣
t=0

Using the multivariable chain rule, we know

d

dt

[
g(t)

]∣∣∣∣
t=0

=
d

dt

[
f
(
x(t), y(t)

)]∣∣∣∣
t=0

=
[∂f
∂x
· dx
dt

+
∂f

∂y
· dy
dt

]∣∣∣∣
t=0

= fx(a, b) · x′(0) + fy(a, b) · y′(0)

= fx(a, b) · u1 + fy(a, b) · u2

= 〈fx(a, b), fy(a, b)〉 · 〈u1, u2〉

= ∇f(a, b) · u

This gives us an alternative method to calculate the directional derivative without requiring limits.
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4. (6 points) Using your work in problem 3, explain which unit vectors u = 〈u1, u2〉 in the domain D give

A. the direction of steepest ascent on the surface.

B. the direction of no change on the surface.

C. the direction of steepest descent on the surface.

Please provide evidence that your concept images associated with these directions incorporate multiple
categories of knowledge including verbal, graphical, and symbolic representations of these ideas. To earn
top scores, your solution should combine the work you did in problem 3 with the cosine formula for the
dot product. Also, please make specific connections to between your explanations of each direction and
your knowledge of the extreme values of the cosine function.

Solution: By combining our solution in problem 3 above with the cosine formula for the dot product
we see

Duf(a, b) = ∇f(a, b) · u

= ‖∇f(a, b)‖2 · ‖u‖2 · cos(θ)

= ‖∇f(a, b)‖2 · cos(θ)

where θ is the angle between the vectors ∇f(a, b) and u. We have three cases to consider.

Case 1: θ = 0 =⇒ cos(θ) = 1

We know that the maximum value of the cosine curve is 1 and this occurs when θ = 0. Applying
this knowledge to the directional derivative formula, we know that the derivative Duf(a, b) has
maximum value when θ = 0. Since the directional derivative measured the slope of a tangent line
to the surface in the direction of the vector u, the rise over run is a function of which unit vector
we choose. The dot product version of the directional derivative indicates that if we want to ascend
our surface as quickly as possible, we will get the largest rise over run when u is the unit vector in
the same direction and orientation as the gradient vector ∇F (a, b). In other words, the slope of this
tangent line is maximum when we move in the direction of the gradient vector.

Case 2: θ =
π

2
=⇒ cos(θ) = 0

We know that the cosine curve has a zero output value when θ = π
2 . Applying this knowledge to

the directional derivative formula, we know that the derivative Duf(a, b) is zero when θ = π
2 . Since

the directional derivative measured the slope of a tangent line to the surface in the direction of the
vector u, the rise over run is zero in this case. In other words, if we travel 90◦ from the gradient,
we will get no upward or downward motion on the surface. This is equivalent to moving along the
contour curve on the surface. Indeed, this unit vector is in the same direction as the tangent line to
the level curve of the surface at this point of tangency.

Case 3: θ = π =⇒ cos(θ) = −1

We know that the maximum value of the cosine curve is −1 and this occurs when θ = π. Applying
this knowledge to the directional derivative formula, we know that the derivative Duf(a, b) has
maximum value when θ = π. Since the directional derivative measured the slope of a tangent line
to the surface in the direction of the vector u, the rise over run is smallest when we travel in the
same direction but opposite orientation as the the gradient vector ∇F (a, b). In other words, we can
descend our surface fastest in the negative direction of the gradient vector.
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For problems 5 - 6, let f(x, y) = 15− x2 − 4y2 + 2x− 40y.

5. (8 points) Find a vector-valued equation for the tangent line to the level curve

L100(f) = {(x, y) : f(x, y) = 100}

at the point (−3,−5).

Solution: If D = Dom(f), then we notice that the level curve L5(f) ⊆ D ⊆ R2. We begin our
work by considering the geometry of this level curve. We notice

x2 + y2 − 6x+ 2y − 10 = 5 =⇒ x2 − 6x+ y2 + 2y = 15

=⇒ x2 − 6x+ 9 + y2 + 2y + 1 = 25

=⇒ (x− 3)2 + (y + 1)2 = 52

This is a circle with radius r = 5 and center point (h, k) = (3,−1).We notice that the given point is
on the edge of the circle. To find the vector-valued equation of the tangent line to L5(f) given by

r(t) = r0 + t · v

where r0 ∈ R2 is a point on the line and v ∈ R2 represents the direction of the line. By the problem
statement, we know that r0 = 〈6,−5〉. To find the “direction” of this line, we will use implicit
differentiation:

d

dy

[
x2 + y2 − 6x+ 2y − 10

]
=

d

dy

[
5
]

=⇒ 2x− 6 + 2y · dy
dx

+ 2 · dy
dx

= 0

=⇒ dx

dy
=

3− x
y + 1

=⇒ dx

dy

∣∣∣
(6,−5)

=
3

4

=⇒ v = 〈4, 3〉

Using this calculation, we find

r(t) = 〈6,−5〉+ t · 〈4, 3〉 = 〈6 + 4t , −5 + 3t〉
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6. (6 points) On the axes below, sketch the level curve L100(f) and it’s the tangent line from problem 5
above. Also, sketch the vector u ∈ R2 with tail at point (−3,−5) where u is the unit vector in the
direction of the gradient vector ∇f(−3,−5) given by

u =
∇f(−3,−5)

‖∇f(−3,−5)‖2

Solution: We begin this problem by finding the gradient of our function at the given point:

∇f(6,−5) = 〈 2x− 6 , 2y + 2 〉
∣∣
(6,−5)

= 〈 6 , −8 〉

Then, we can see that

u =
∇f(6,−5)

‖∇f(6,−5)‖2
=

〈
3

5
, −4

5

〉
We graph this vector with tail (6,−5) below.

Now, use full sentences to explain how your graph above relates your knowledge about the shape of the
surface f(x, y) and your solution to problem 6 above.

Solution: Notice that the surface is an upward facing elliptic parabola. The vertex of this surface
is at the point (3,−1,−20). Based on the shape of the surface, we know that at the input point
(6,−5), the direction of fastest ascent is directly away the center point of each circular level curve.
Indeed, this is what we see with our gradient vector at this point.
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For problems 7, 8, and 9, choose two out of these three problems you want me to grade for your first
attempt during our in-class exam session. For the problem you would like to skip grading for your in-
class attempt, please mark a big “X” through that problem. For the problem you skip, you can submit
your solutions in your exam corrections. For now, focus on the two of these problems that you feel most
comfortable with and give your best effort.

7. (8 points) Among all the points on the graph of z = 10−x2−y2 that lie above the plane x+2y+3z = 0,
find the point farthest from the plane.

Solution: Let’s define the distance from the plane to the point using the function:

d(x, y, z) =
√

(x− 2)2 + (y − 0)2 + (z −−3)2

=
√

(x− 2)2 + y2 + (z + 3)2

By the equation for the plane, we know that z = 1−x− y. Thus we can write the distance function
in terms of x and y:

d(x, y) =
√

(x− 2)2 + y2 + (1− x− y + 3)2

=
√

(x− 2)2 + y2 + (4− x− y)2

Notice that function d(x, y) achieve a minimum at point (a, b) if and only if function d2(x, y) has a
minimum value at point (a, b). Thus, to find the minimum distance, let’s study the function

f(x, y) = d2(x, y) = (x− 2)2 + y2 + (4− x− y)2.

By the 2nd derivative test for multivariable functions, we know that the minimum of d2 will occur
where ∇f(x, y) = 0:

∇f(x, y) =

[
2(x− 2)− 2(4− x− y)

2y − 2(4− x− y)

]
=

[
4x+ 2y − 12
2x+ 4y − 8

]
Thus we see that ∇f(x, y) = 0 if and only if x = 8/3 and y = 2/3. We can further check the
Wronskian of f(x, y) given by

fxx · fyy − f2xy = 4 · 4− 22 = 12 > 0.

Since the Wronskian is positive and fxx = 4, we know that f(x,y) has a local minimum at point
(x, y) = (0.5, 2). Thus, the minimum distance will occur at the point:(

8

3
,

2

3
,−7

3

)
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8. (8 points) Consider the function

f(x, y) = (x− 1)2 + (y − 2)2

Find the minimum and maximum values of f(x, y) subject to the constraint that x2 + y2 = 45.

Solution: Let’s define the constraint function

g(x, y) = x2 + y2 − 1

We will solve this problem using Lagrange multipliers. To this end, we want to find values of (x, y)
and λ such that

Eq. 1 :
2x

49
= 2λx

Eq. 2 :
2y

4
= 2λy

Eq. 3 : 0 = x2 + y2 − 1

We can use the zero-product property on equations 1 and 2 to find two possible solutions for each
equations:

2x ·
(

1

49
− λ
)

= 0 =⇒ x = 0 or λ =
1

49

2y ·
(

1

4
− λ
)

= 0 =⇒ y = 0 or λ =
1

4

This results in four points

(0,±1) or (±1, 0)

This correlates to the minimum value of
1

49
and maximum value

1

4
.
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9. (8 points) Consider two multivariable functions defined by implicit equations

F (x, y, z) = x2 + y2 − 2 = 0 and G(x, y, z) = x+ z − 4 = 0.

Notice that F (x, y, z) = 0 defines a cylinder while G(x, y, z) = 0 defines a plane. The intersection of
these two surfaces forms an ellipse E. Find the parametric equation for the line tangent to E at the
point P0(1, 1, 3).

Solution: Let’s define the constraint function

g(x, y) = x2 + y2 − 1

We will solve this problem using Lagrange multipliers. To this end, we want to find values of (x, y)
and λ such that

Eq. 1 :
2x

49
= 2λx

Eq. 2 :
2y

4
= 2λy

Eq. 3 : 0 = x2 + y2 − 1

We can use the zero-product property on equations 1 and 2 to find two possible solutions for each
equations:

2x ·
(

1

49
− λ
)

= 0 =⇒ x = 0 or λ =
1

49

2y ·
(

1

4
− λ
)

= 0 =⇒ y = 0 or λ =
1

4

This results in four points

(0,±1) or (±1, 0)

This correlates to the minimum value of
1

49
and maximum value

1

4
.
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