Lesson 10: Chain Rule Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Topics: Section 12.5: The Chain Rul, p. 907-916

Theorem 12.7. p. 908 Chain Rule (Two Intermediate and One Independent Variable)

Let $z=z(x, y)$ be a differentiable function of x and y on its domain, where $x=x(t)$ and $y=y(t)$ are differentiable functions of t on an interval I. Then

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

Note: A useful way to remember this theorem is to use the tree diagram:

Figure 12.54

Theorem. p. 908 Chain Rule (Three Intermediate and One Independent Variable)

Let $w=w(x, y, z)$ be a differentiable function of x, y and z on its domain, where $x=x(t)$, $y=y(t)$ and $z=z(t)$ are differentiable functions of t on an interval I. Then

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}+\frac{\partial w}{\partial z} \frac{d z}{d t}
$$

Note: A useful way to remember this theorem is to use the tree diagram:

Figure 12.55

Theorem 12.8. p. 909 Chain Rule (Two Intermediate and Two Independent Variable)

Let $z=z(x, y)$ be a differentiable function of x and y on its domain, where $x=x(s, t)$ and $y=y(s, t)$ are differentiable functions of s and t. Then

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}, \quad \text { and } \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
$$

Note: A useful way to remember this theorem is to use the tree diagram:

Figure 12.57

Figure 12.58

Theorem. p. 909 Chain Rule (Three Intermediate and Two Independent Variable)

For this situation, we can draw the following tree diagram:

Figure 12.59

Theorem 12.9. p. 911 Implicit Differentiation

Let F be differentiable on its domain and suppose that $F(x, y)=0$ defines y as a function of x. Provided that $F_{y} \neq 0$, then

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}
$$

