Lesson 13: Maximum and Minimum Problems Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Topics: Section 12.5: Maximum and Minimum Problems, p. 939-951

12.8 Maximum and Minimum Problems p. 939-951

Definition. Local Maximum Value(s) p. 939

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a two variable function. We say that f has a local maximum at (a, b) if and only if

$$
f(x, y) \leq f(a, b)
$$

for (x, y) in the domain of f in some open disk centered at (a, b). We call this output value $f(a, b)$ the local maximum value on this open disk $D \subseteq \mathbb{R}^{2}$ since

$$
f(a, b)=\max _{\mathbf{x} \in D} f(\mathbf{x})
$$

In this case, we call the input point (a, b) a local maximizer of the function f since

$$
(a, b)=\underset{\mathbf{x} \in D}{\arg \max } f(\mathbf{x})
$$

Definition. Local Minimum Value(s) p. 939

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a two variable function. We say that f has a local minimum at (a, b) if and only if

$$
f(x, y) \geq f(a, b)
$$

for (x, y) in the domain of f in some open disk centered at (a, b). We call this output value $f(a, b)$ the local minimum value on this open disk $D \subseteq \mathbb{R}^{2}$ since

$$
f(a, b)=\min _{\mathbf{x} \in D} f(\mathbf{x})
$$

In this case, we call the input point (a, b) a local minimizer of the function f since

$$
(a, b)=\underset{\mathbf{x} \in D}{\arg \min } f(\mathbf{x})
$$

Theorem 12.13. Necessary conditions for unconstrained optimization problems p. 939

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a two variable function. If f has a local maximum or local minimum at (a, b) and if $f(x, y)$ is differentiable at the point (a, b), then $\nabla f(a, b)=0$ (i.e. $f_{x}(a, b)=f_{y}(a, b)=0$).

Definition. Critical Point p. 940

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a two variable function. An interior point (a, b) in the domain of the function f is a critical point of f if and only if either of the following is true:

1. $\nabla f(a, b)=0$ (i.e. the first partials $f_{x}(a, b)=f_{y}(a, b)=0$)
2. at least one of the partial derivatives f_{x} or f_{y} does not exist at the point (a, b)

Theorem 12.14. Second Partial Derivatives Test p. 941

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a two variable function. Suppose that $f(x, y)$ is twice differentiable on an open disk centered at the point (a, b) where $\nabla f(a, b)=0$. Define the discriminant of f to be the function

$$
\begin{equation*}
D(x, y)=f_{x x}(x, y) \cdot f_{y y}(x, y)-\left(f_{x y}(x, y)\right)^{2} \tag{12.1}
\end{equation*}
$$

Then, we can use this function to make the following conclusions:

1. If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then f has a local maximum value at (a, b)
2. If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then f has a local minimum value at (a, b)
3. If $D(a, b)<0$, then f has a saddle point at (a, b)
4. If $D(a, b)=0$, then this test is inconclusive and cannot be used to identify the behavior of f at point (a, b)

Definition. Saddle Point p. 940

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a two variable function. The function f is said to have a saddle point at the critical point (a, b) if and only if in every disk centered at (a, b) :

1. there is at least one point (x, y) at which $f(x, y)>f(a, b)$
2. here is at least one (different) point (x, y) at which $f(x, y)<f(a, b)$

Procedure. Finding Absolute Maximum and Minimum on a Closed Set p. 944

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a continuous function on a closed and bounded set $R \subseteq \mathbb{R}^{2}$. To find the absolute maximum and minimum values of f on R :

1. Find the output values of f at all critical points in R.
2. Find the maximum and minimum values of f on the boundary of R.
3. Remember that the greatest output value(s) of f found in Steps 1 and 2 is the absolute maximum of f on R.
4. Remember that the least output value(s) of f found in Steps 1 and 2 is the absolute minimum of f on R.
