Name : ___

- 1. Let $\mathbf{n} = \langle a, b, c \rangle$ be a normal vector to a plane containing the point $P_0(x_0, y_0, z_0)$. Derive the equations for a plane in \mathbb{R}^3 . To do so, complete each of the following:
 - a. Draw a diagram of a plane one which you identify P_0 , **n** and a general vector in the plane $\mathbf{x} = \overrightarrow{P_0 P}$
 - b. Explain how to use the orthogonality theorem for the dot product to get an equation for the plane.
 - c. Use your work in parts a. and b. above to derive the scalar equation for a plane.
 - d. Graph a plane in Mathematica

2. Find an equation of the line through the point (1, 2, 3) in the direction of the normal vector to the plane x - y + z = 100.

3. Find a parametric equation for line L in the intersection of the planes x + 2z = 1 and x + y - z = 0.

- 4. Compute the distance from the origin (0, 0, 0) to the plane 2x + y 2z = 6.
- 5. Consider the following plane:
 - Plane 1:
 x + y z = 0

 Plane 2:
 x y = 0

 Plane 3:
 x + y + z = 0

 Plane 4:
 -2x 2y + 2z = 5

 Plane 5:
 x + y = 0

Which pairs of planes are parallel or orthogonal.

6. Challenge problem: Consider the lines

$$\mathbf{L}_{1}(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} t \\ 2t \\ 1-t \end{bmatrix} \quad \text{and} \quad \mathbf{L}_{2}(s) = \begin{bmatrix} x(s) \\ y(s) \\ z(s) \end{bmatrix} = \begin{bmatrix} 1-s \\ 2+s \\ -2s \end{bmatrix}$$

and the plane M given by equation 10x - 2y + 3z = 0. The line $\mathbf{L}_1(t)$ intersects plane M at point Q. The line $\mathbf{L}_2(s)$ intersects plane M at point R. Lines $\mathbf{L}_1(t)$ and $\mathbf{L}_2(s)$ intersect at point P. Compute the area of the triangle PQR. The diagram below may help you visualize this problem.

