Lesson 9: Ordinary Derivatives Review Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Topics: Chapter 3: Derivatives, p. 126-235

Definition. Limit Definition of Derivatives at a point for Single-Variable Functions

Let $f: D \rightarrow \mathbb{R}$ be a single variable function, where $D=\operatorname{Dom}(f) \subseteq \mathbb{R}$. Then, the derivative of a function f at a number $a \in D$, denoted $f^{\prime}(a)$ is given by

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad \text { Limit definition of the at a point in slope notation. } \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad \text { Limit definition of the at a point in derivative notation. }
\end{aligned}
$$

The tangent line to the single variable function $y=f(x)$ at point $(a, f(a))$ is the line through ($a, f(a)$) whose slope is equal to $f^{\prime}(a)$, the derivative of $f(x)$ at $x=a$. We call the derivative $f^{\prime}(a)$ the instantaneous rate of change of $y=f(x)$ with respect to x at $x=a$.

Definition. Limit Definition of Derivatives as a function for Single-Variable Functions

Let $f: D \rightarrow \mathbb{R}$ be a single variable function, where $D=\operatorname{Dom}(f) \subseteq \mathbb{R}$. Then, the derivative of a function f at any number $x \in D$, denoted $f^{\prime}(x)$ is given by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad \text { Limit definition of the derivative in derivative notation. }
$$

The function $f^{\prime}(x)$ is a function of variable x, known as the derivative of f with respect to x.

Theorem. Differentiability Implies Continuity

If f is differentiable at a, then f is continuous at a.

Theorem. Increasing Test and Decreasing Test

Increasing Test: If $f^{\prime}(x)>0$ on interval $I \subset D$, then f is increasing on this interval.
Decreasing Test: If $f^{\prime}(x)<0$ on interval $I \subset D$, then f is decreasing on this interval.

Theorem. Concave Up Test and Concave Down Test

Concave Up Test: If $f^{\prime \prime}(x)>0$ on interval $I \subset D$, then f is concave up on this interval.
Concave Down Test: If $f^{\prime \prime}(x)<0$ on interval $I \subset D$, then f is concave down on this interval.

Theorem. Derivative Rules for Algebraic Combinations of Functions

Suppose that a are real numbers and f and g are differentiable functions. Further, for the chain rule suppose that f is differentiable at $g(x)$. Then, as long as we check these conditions, we can conclude

1. Constant Multiple Rule: $\quad \frac{d}{d x}[c \cdot f(x)]=c \cdot \frac{d}{d x}[f(x)]$
2. Sum/Difference Rule: $\quad \frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]$
3. Product Rule:

$$
\frac{d}{d x}[f(x) \cdot g(x)]=f(x) \cdot \frac{d}{d x}[g(x)]+g(x) \cdot \frac{d}{d x}[f(x)]
$$

4. Quotient Rule:

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \cdot \frac{d}{d x}[f(x)]-f(x) \cdot \frac{d}{d x}[g(x)]}{[g(x)]^{2}}
$$

5. Chain Rule:

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot f^{\prime}(x)
$$

Theorem. Derivative Rules for Power, Exponential and Logarithmic Functions

Suppose that a, c are real numbers and $n \in \mathbb{R}$. Then, as long as we check these conditions, we can conclude

Constant Rule: $\quad \frac{d}{d x}[c]=0$

Simple Power Rule:
If $n \in \mathbb{N}$, then $\frac{d}{d x}\left[x^{n}\right]=n \cdot x^{n-1}$

General Power Rule:
If $n \in \mathbb{R}$, then $\frac{d}{d x}\left[x^{n}\right]=n \cdot x^{n-1}$
Derivative of Exponent Rule: $\quad \frac{d}{d x}\left[a^{x}\right]=a^{x} \cdot \ln (a)$
Derivative of Natural Exponent Rule: $\quad \frac{d}{d x}\left[e^{x}\right]=e^{x}$
Derivative of $\ln (|x|)$:
$\frac{d}{d x}[\ln (|x|)]=\frac{1}{x}$

Derivative of $\log _{a}(x)$:

$$
\frac{d}{d x}\left[\log _{a}(x)\right]=\frac{1}{x \cdot \ln (a)}
$$

Theorem. Derivative Rules for Trigonometric Functions

Suppose that a, c are real numbers and $n \in \mathbb{R}$. Then, as long as we check these conditions, we can conclude

Derivative of $\sin (x)$ Rule: $\quad \frac{d}{d x}[\sin (x)]=\cos (x)$
Derivative of $\cos (x)$ Rule: $\quad \frac{d}{d x}[\cos (x)]=-\sin (x)$
Derivative of $\tan (x)$ Rule: $\quad \frac{d}{d x}[\tan (x)]=\sec ^{2}(x)$
Derivative of $\csc (x)$ Rule: $\quad \frac{d}{d x}[\csc (x)]=-\csc (x) \cdot \cot (x)$
Derivative of $\sec (x)$ Rule: $\quad \frac{d}{d x}[\sec (x)]=\sec (x) \cdot \tan (x)$
Derivative of $\cot (x)$ Rule: $\quad \frac{d}{d x}[\cot (x)]=-\csc ^{2}(x)$

Theorem. Derivative Rules for Trigonometric Functions

Suppose that a, c are real numbers and $n \in \mathbb{R}$. Then, as long as we check these conditions, we can conclude

Derivative of $\arcsin (x)$ Rule: $\quad \frac{d}{d x}[\arcsin (x)]=\frac{1}{\sqrt{1-x^{2}}}$
Derivative of $\arccos (x)$ Rule: $\quad \frac{d}{d x}[\arccos (x)]=\frac{-1}{\sqrt{1-x^{2}}}$
Derivative of $\arctan (x)$ Rule: $\quad \frac{d}{d x}[\arctan (x)]=\frac{1}{1+x^{2}}$
Derivative of $\operatorname{arccsc}(x)$ Rule: $\quad \frac{d}{d x}[\sec (x)]=-\frac{1}{x \sqrt{x^{2}-1}}$
Derivative of $\operatorname{arcsec}(x)$ Rule: $\quad \frac{d}{d x}[\sec (x)]=\frac{1}{x \sqrt{x^{2}-1}}$
Derivative of $\operatorname{arccot}(x)$ Rule: $\quad \frac{d}{d x}[\cot (x)]=-\frac{1}{1+x^{2}}$

Procedure. Implicit Differentiation

Implicit differentiation is a technique used to find $y^{\prime}=\frac{d y}{d x}$ when we are considering an equation involving variables x and y such that y cannot be written explicitly in terms of x. In this case, we apply implicit differentiation using a number of steps:

1. Take derivative of both sides of implicit equation with respect to x
2. Assume that "output" variable y is an explicit function of "input" variable: x : i.e. assume $y=y(x)$
3. Apply chain rule and other rules of differentiation to both sides of equation. For the derivative of the inner function, introduce algebraic symbol representing unknown derivative: $y^{\prime}=\frac{d y}{d x}$.
4. Solve for unknown and desired derivative.

Procedure. Logarithmic Differentiation

Logarithmic differentiation is a technique used to find simplify our process of taking derivatives of complex algebraic function by relying on rules of logarithms:

1. Take natural \log of both sides of equation $y=f(x)$
2. Use rules of logarithms to simplify expressions on both the left and right hand side of equality.
3. Differentiate implicitly both sides of equations with respect to x
4. Solve for unknown and desired derivative.
