Lesson 9: Partial Derivatives Handout
Reference: Brigg's "Calculus: Early Transcendentals, Second Edition"
Topics: Section 12.4: Partial Derivatives, p. 894-907

Definition. p. 897 Partial Derivative with respect to x

Let $f: D \rightarrow \mathbb{R}$ be a multivariable variable function, where $D=\operatorname{Dom}(f) \subseteq \mathbb{R}^{2}$. Then, the partial derivative of a function f with respect to x at point $(a, b) \in D$, is

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(a+h, b)-f(a, b)}{h} \quad \text { (Limit definition in derivative notation) }
$$

provided this limit exists.
Notation: The partial derivative at a point (a, b) can be denoted using any of the following notation:

$$
f_{x}(a, b)=\frac{\partial f}{\partial x}(a, b)=\left.\frac{\partial f}{\partial x}(a, b)\right|_{(a, b)}=\left.\frac{\partial}{\partial x}[f(x, y)]\right|_{(a, b)}
$$

The last two expressions rely on the "evaluated at" bar that we first used in integral calculus (Math 1B). Notice, to define this derivative, we apply the partial differentiation operator $\frac{\partial}{\partial x}$ with respect to x with

$$
f_{x}(x, y)=\frac{\partial}{\partial x}[f(x, y)]
$$

Definition. p. 897 Partial Derivative with respect to y

Let $f: D \rightarrow \mathbb{R}$ be a multivariable variable function, where $D=\operatorname{Dom}(f) \subseteq \mathbb{R}^{2}$. Then, the partial derivative of a function f with respect to y at point $(a, b) \in D$, is

$$
f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(a, b+h)-f(a, b)}{h} \quad \text { (Limit definition in derivative notation) }
$$

provided this limit exists.
Notation: The partial derivative at a point (a, b) can be denoted using any of the following notation:

$$
f_{y}(a, b)=\frac{\partial f}{\partial y}(a, b)=\left.\frac{\partial f}{\partial y}(a, b)\right|_{(a, b)}=\left.\frac{\partial}{\partial y}[f(x, y)]\right|_{(a, b)}
$$

The last two expressions rely on the "evaluated at" bar that we first used in integral calculus (Math 1B). Notice, to define this derivative, we apply the partial differentiation operator $\frac{\partial}{\partial y}$ with respect to y with

$$
f_{y}(x, y)=\frac{\partial}{\partial y}[f(x, y)]
$$

Definition. p. 899 Higher-order partial derivative notation

Table 12.4		
Notation $\mathbf{1}$	Notation 1	What we say \ldots
$\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}$	$\left(f_{x}\right)_{x}=f_{x x}$	d squared f dx squared or $f-x-x$
$\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}$	$\left(f_{y}\right)_{y}=f_{y y}$	d squared f dy squared or $f-y-y$
$\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}$	$\left(f_{y}\right)_{x}=f_{y x}$	$f-y-x$
$\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}$	$\left(f_{x}\right)_{y}=f_{x y}$	$f-x-y$

Theorem 12.4. p. 900 (Clairaut) Equality of Mixed Partial Derivatives

Assume that $f(x, y)$ is a multivariable function with domain $D \subseteq \mathbb{R}^{2}$. Suppose that $f_{x y}$ and $f_{y x}$ are continuous throughout D. Then, for all points in D, we have

$$
f_{x y}(x, y)=\frac{\partial}{\partial y}\left[\frac{\partial}{\partial x}[f(x, y)]\right]=\frac{\partial}{\partial x}\left[\frac{\partial}{\partial y}[f(x, y)]\right]=f_{y x}(x, y)
$$

Definition. p. 902 Differentiability

The function $z=f(x, y)$ is differentiable at (a, b) provided that $f_{x}(a, b)$ and $f_{y}(a, b)$ exist and the change $\Delta z=f(a+\Delta x, b+\Delta y)-f(a, b)$ equals

$$
\Delta z=f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

where for a fixed a and b, the values of ϵ_{1} and ϵ_{2} depend only on Δx and Δy with $\left(\epsilon_{1}, \epsilon_{2}\right) \longrightarrow$ $(0,0)$ and $(\Delta x, \Delta y) \longrightarrow(0,0)$

Theorem 12.5. p. 903 Conditions for Differentiability

Suppose the multivariable function $f(x, y)$ has partial derivatives f_{x} and f_{y} defined on an open set containing point (a, b) with f_{x} and f_{y} continuous at (a, b). Then, f is differentiable at (a, b).

Theorem 12.6. p. 903 Differentiable Implies Continuous

If the multivariable function $f(x, y)$ is differentiable at (a, b), then, f is continuous at (a, b).

