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Abstract: Many students who enroll in a first course in linear algebra major in STEM

disciplines other than mathematics. Teachers who serve such students may find it difficult

to provide authenic problems from these broader areas that ignite students’ interest in lin-

ear algebra. In this paper, we highlight an interdisciplinary learning activity that engages

students in using linear systems of equations to model the behavior of practical electric

circuits. This exercise fits nicely into standard introductory linear algebra curricula and

is designed to excite students majoring in engineering, physics, or applied mathematics.

We also include references to a collection of open-access resources to support instruc-

tors who want to use this material in project-based, flipped-learning, inquiry-oriented, or

independent-study environments.

Keywords: Mathematical modeling, matrix multiplication, nonsingular linear sys-

tems, block matrix, electric circuit analysis, nodal analysis

INTRODUCTION

In this paper, our goal is to empower students and faculty in introductory linear

algebra courses to create rich learning experiences that inspire students to persist

in STEM majors and build student excitement about their future academic and

career endeavors. To do this, we explore an interdisciplinary project that includes

a novel modeling approach to analyze electric circuits using matrix equations. We

want to help students discover meaningful answers to the questions: “What are

real-world applications of this theory?” and “How does this relate to my major?”.

Our hands-on modeling activity is matrix-oriented, incorporates technology, focuses

on the needs and interests of students, and supports key client disciplines that

require linear algebra as a prerequisite class. In other words, it addresses four of the

five recommendations for a first course in linear algebra from the Linear Algebra

Curriculum Study Group [9]. This applied project also provides an example to

demonstrate that working with block matrix structures can make mathematical

analysis easier by decoupling variables [23].

We have a national need to improve the quality of undergraduate STEM edu-

cation “to ensure the economic strength, national security, global competitiveness,
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environment, and health of the United States” [35, p. 7]. As is outlined in the

2012 Report for the President’s Council of Advisors on Science and Technology

(PCAST), “fewer than 40 percent of students who enter college intending to major

in a STEM field complete college with a STEM degree” [39, p. i]. The PCAST

report argues that we must increase the number of STEM majors we recruit and

retain by focusing on improving STEM courses taken in the first two years of college

while placing a special priority on utilizing empirically validated teaching strategies

by emphasizing active learning and student engagement.

Too many introductory STEM classes are taught using lectures in which the

instructor delivers long, technical monologues and provides little opportunity for

student engagement. Extensive research indicates that to increase the number of

STEM graduates, college teachers should be “abandoning traditional lecturing in

favor of active learning” [20]. Indeed, 90% of students cite “poor teaching” and

“problems with instructor pedagogy” as powerful concerns that contribute to their

decision to leave STEM fields [44, p. 8 - 9]. These students indicate that they find

“it hard to retain their interest in the subject where instructors failed to present

the material in a stimulating manner” [44, p. 10]. Students also report that they

yearn for and often do not find illustrations of how course content can be applied

to authentic problems related to their academic and career interests [44, p. 10].

College teachers may struggle to find and use curriculum that is designed to tap

into their students’ interests due to the design of traditional textbooks. Many intro-

ductory mathematics textbooks in the United States “base their whole approach on

the idea of isolating methods, reducing them to their simplest form, and practicing

them” which “induces boredom” and gives “the most simplified and disconnected

version of the method to be practiced” so that students have “no sense of when or

how they might use the method” [8, p. 42]. Textbooks that do provide applications

often focus on simplified models of ideal, theoretic situations that are far removed

from students’ lived experiences. Students that engage with these types of learning

materials likely have no opportunity to collect realistic data, no chance to discover

connections with the material world, and may find it impossible to discover how

the math they learn in class is applicable to solving problems they care about.

In recognition of the urgent need for drastic changes in mathematics curricula

and teaching practices, a wide range of mathematics organizations have produced

studies, reports, and guidelines offering specific recommendations for improving un-

dergraduate mathematical sciences programs. The Mathematical Association of

America (MAA) argues that “the status quo is unacceptable” and urges teachers

to update introductory mathematics curricula to focus on active learning, to use

evidence-based teaching practices, and to establish stronger interdisciplinary learn-

ing tasks that ignite students’ interests [30]. The MAA also suggests that “students
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should learn to link applications and theory” and “develop mathematical indepen-

dence and experience open-ended inquiry” [11].

The Society for Industrial and Applied Mathematics (SIAM) along with the

Consortium for Mathematics and Its Applications (COMAP) provide convincing

arguments for incorporating real-world mathematical modeling activities into class-

room learning in their Guidelines for Assessment and Instruction in Mathemati-

cal Modeling Education (GAIMME) report [22]. These guidelines emphasize that

mathematical modeling “should be taught at every stage of a student’s mathemati-

cal education” and should “be used to motivate curricular requirements” while high-

lighting “the importance and relevance of mathematics in answering” questions that

students care about. In 2013, the National Research Council (NRC) recommended

that introductory college mathematics courses should provide students with oppor-

tunities to make explicit connections between mathematics and other disciplines to

better “understand the role of the mathematical sciences in the wider world of sci-

ence, engineering, medicine, defense, and business” [36, p. 2 - 3]. Similar guidance

is offered by the Transforming Post-Secondary Education in Mathematics (TPSE

Math) project which calls for increased inclusion of modeling in college math classes

that “demonstrate ways to connect the mathematics studied to students intended

majors” while also offering “interesting ways to deliver instruction and engage stu-

dents” [51, p. 5]. These national reports and professional organizations declare that

we must re-imagine our mathematics curriculum to include interesting mathemat-

ical modeling activities that invite students to work on real-world problems. They

call on us to empower students to discover for themselves that our course content is

useful, meaningful, and powerful, particularly in introductory mathematics classes

that set a foundation for more advanced learning in many STEM fields.

The modeling activity and active learning exercises (see Appendix A) presented

here, along with other related projects [2], are designed to meet this exact need.

However, developing curriculum is half of the puzzle. The other half involves figuring

out how to implement this type of activity inside the classroom using empirically-

validated, research-based teaching strategies. To answer questions about how to

design teaching policies that center active learning using applied modeling activi-

ties, the research cited below indicates that we can increase student persistence by

implementing three interventions in introductory STEM courses.

The first intervention relates to the design of teaching routines that intellectually

engage students in meaningful learning activities. Replacing traditional lectures

with active learning tasks, like the ones described in this paper, has been shown to

improve student learning, increases retention rates, and reduce achievement gaps

within diverse student populations [31]. The key to active learning is to engage

students in “doing things and thinking about what they are doing” [7, p. 2]. Such
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active learning tasks encourage students to engage in critical thinking, creative

problem solving, attentive observation, meta-cognitive reflection, meaning making,

and relationship building in the context of shared learning [18, p. 115 – 137].

The second intervention involves creating relationship-rich educational experi-

ences for students. Decades of research suggests that student-faculty, peer-to-peer,

and student-staff relationships are essential factors that lead to deeper learning, a

stronger sense of belonging, and higher achievement in college. Indeed, “students’

interactions with peers, faculty, and staff strongly influence the breadth and depth

of student learning, retention and graduation rates, and a wide range of other out-

comes, including critical thinking, identity development, communication skills, and

leadership abilities” [17, p. 5]. Students who enjoy authentic relationships and

identify with a community of STEM professionals persist longer and show reduced

departure rates from STEM fields [15].

The third intervention that affects student persistence involves an explicit focus

on tapping into students’ intrinsic motivations for learning [40]. A powerful source

of intrinsic motivation is interest which consists of two distinct sentiments including

“an individual’s momentary experience of being captivated by an object as well as

more lasting feelings that the object is enjoyable and worth further exploration”

[24]. Research shows that when students feel interested in learning, they spend

more time studying, learn at a deeper level, persist longer on learning tasks, and

get better grades in their classes [46]. Interest also plays a central role in the growth

of expertise and knowledge development [43].

DELIVERY

The applied project described in this paper can be successfully integrated into

introductory linear algebra courses to address the three interventions described

above. The first author of this work uses this modeling activity in flipped-learning

environments [50] where the teacher and students work together to develop the

expectation that students are responsible to get exposure to new material outside of

class. Students either watch YouTube videos [3] that cover course content or read an

instructor-authored textbook manuscript that aligns with the videos and are typeset

in LATEX. These open-access resources are designed to help students build the skills

they need to complete their chosen learning exercises. In this setup, each student

is tasked to create a comprehensive learning portfolio [53] that includes not only

detailed notes to document their understanding of course content but also solutions

to any exercises that students find interesting. At their best, these exercises are

open-ended, extend beyond the content covered in the videos, are structured to

scaffold learning, allow for multiple solution paths [8, pp. 57 – 91], and guide

students to organize their thinking and deepen their explorations [1, pp. 40 – 65].
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This flipped-learning structure ensures that in-class meetings are dedicated to

active learning in small groups. While students engage in individual and group

problem solving during class, the teacher moves around the room to build rela-

tionships with students, provide support, give feedback, and answer questions. As

students progress in the course, they level-up to the entire modeling experience de-

scribed in this paper. For the capstone project of the academic term, students use

the algorithm described below to analyze an example electric circuit and also pro-

vide answers to questions from Appendix A that they find interesting [10]. Students

include their work on this applied modeling project in their learning portfolio.

This approach may require support in topics that are not traditionally included

in mathematics curriculum. To help the reader, we provide a collection of explana-

tory resources on the companion website for this paper [4]. These include introduc-

tory workbooks on how to build and measure electric circuits, resources for model

verification using the free online MultiSim software [34], YouTube videos to support

on-demand direct instruction, example circuit problems, MATLAB script files, and

more. These materials can be used to support fun independent study opportunities,

to guide modeling activities in project-based or flipped learning classrooms, or to

build an entire course around the archetype problem of circuit analysis.

The rest of this paper is organized to support the reader in mastering the math-

ematical foundations of the linear algebraic nodal analysis (LANA) algorithm. An

elementary familiarity with the application domain is all that’s needed to use this

activity successfully. However, for readers who seek deep understanding, we briefly

review the tradition of using linear algebra to model electric circuits. We then de-

scribe each step of the LANA algorithm in general and explore the output of each

step for the example circuit given in Figure 1 below. Appendix A includes open-

ended mathematical inquiry tasks [8, p. 57 – 91] that teachers and students can use

to inspire independent explorations and collaborative sense-making activities [33].

ALGORITHM STATEMENT

Many popular undergraduate- and graduate-level textbooks in applied linear algebra

use electric circuit theory as a motivating example [6, 12, 16, 19, 29, 32, 48]. Some

authors have suggested an equilibrium equation framework in the form

ATCAx = ATCb− f (1)

to describe the behavior of electrical networks [37, 49]. However, these authors do

not provide a general approach to transform practical problems in circuit analysis

into their suggested equilibrium equation framework. To address this issue, we

propose the linear-algebraic nodal analysis (LANA) algorithm. This algorithm takes

as input any linear resistor network that includes resistors, ideal voltage sources, and



6

ideal current sources and produces as output a nonsingular linear-systems problem

in the desired equilibrium equation framework (1). Below is the seven-step LANA

algorithm to transform the problem of analyzing the electric behavior of any linear

resistor circuit into a system of equations involving a nonsingular matrix in the

exact equilibrium equation framework (1) that we desire.

Algorithm 1 The linear-algebraic nodal analysis (LANA) algorithm

1: Identify and label all circuit nodes.

2: Model the circuit as a directed graph.

3: Create all circuit matrices.

4: State the entire set of circuit equations.

4.1: State the equations from Kirchhoff’s current laws (KCLs).

4.2: State the equations from the branch constitutive relations (BCRs).

4.3: State the equations from Kirchhoff’s voltage laws (KVLs).

4.4: Combine the circuit equations.

5: Identify ordinary and generalized nodes.

6: Create a minimal set of independent node potentials.

6.1: Impose one constraint for each voltage source.

6.2: Impose one constraint for the ground node.

7: Solve the equilibrium equation for the circuit.

Our approach in the LANA algorithm makes explicit connections between stan-

dard introductory linear algebra content, curriculum from introductory physics

courses on electricity and magnetism, and the classical nodal analysis algorithm

[13, pp. 108-126] that is popular in almost all introductory circuit analysis courses.

This also sets a foundation for the modified nodal analysis algorithm [25] which is

implemented by many circuit simulation software packages [41, 52]. In our work to

develop the LANA algorithm, the first author created a novel linear-algebraic-based

proof that the coefficient matrix arising in classical nodal analysis is nonsingular

(please contact that author for more details). Finally, following trends in the nu-

merical simulation of electric networks [21], engineers, scientists, and applied math-

ematicians can use our procedure to describe problems in circuit analysis via block

matrices. To help readers understand the notation used in the LANA algorithm

and organize the various equations that arise, the support website for this paper

includes a guide for all variables that show up in this work [4].

An example of this algorithm applied to the circuit in Figure 1 is included below.

The LANA algorithm applies to circuits, like those in Figure 1, containing only two-

terminal elements each of which touches two distinct circuit nodes. To begin, we
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need a complete description of the type, magnitude, and interconnectivity of each

electrical component included in our circuit. In visual form, this information can

be encoded in an ideal circuit schematic as is given in Figure 1.

Figure 1: An ideal schematic diagram of a circuit containing eleven resistors,

three ideal voltage sources, each of which provides a constant voltage drop

across the two leads, and two ideal current sources, each of which provides

a constant current through the two leads. We use this example to illustrate

how this LANA algorithm works in practice.

1 Step 1: Identify and label all circuit nodes

The first step in our algorithm introduces a strategy to identify and label the nodes

in our circuit. To do so, we take advantage of the node identification heuristic

in which we manipulate the original circuit by removing the bodies of each ideal

circuit element. The result is a skeleton consisting only of contiguous segments of

conductive material. Figure 2 captures the output of this heuristic applied to the

example circuit in Figure 1.

Figure 2: The skeleton circuit of contiguous wire segments that results from

the node identification heuristic applied to the circuit from Figure 1. Notice

the body of each circuit element is replaced with a blank space.

Each contiguous segment of wire in Figure 2 is represented by a unique node

of the circuit. Our numbering scheme roughly moves from left to right and top

to bottom using consecutive natural numbers. As shown in Figure 2, our example

circuit contains nine unique circuit nodes.
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2 Step 2: Model the circuit as a directed graph

The second step of the LANA algorithm is to model the circuit as a directed graph.

This digraph model G = (N , E) consists of two sets N and E . By translating our

ideal schematic into a digraph, we form a bridge between the original circuit design

and the linear-algebraic description of that circuit.

2.1 The Set N : The nodes of digraph G

The setN contains a finite list of nodes in the digraph G. Each digraph node k ∈ N
corresponds to a unique circuit node identified in step 1. We label the digraph

nodes using ascending consecutive natural numbers with N = {1, 2, ..., ng}
where ng ∈ N represents the total number of nodes in the circuit. In our example

circuit, we see ng = 9.

2.2 The Set E: The edges of digraph G

The set E ⊂ N × N contains a finite list of directed edges where each edge

e ∈ E in our digraph represents a single ideal circuit element. Borrowing from

graph theory [14], each directed edge e is written as an ordered pair of nodes in the

form e = (initial node, terminal node). In the context of simple electric circuits,

no directed edge extends from a node to itself, so we never see the self loop (k, k)

as a directed edge in this context.

We enumerate the directed edges using ascending consecutive natural numbers.

To count the total number of edges contained in our digraph, we say mr represents

the number of resistors in our circuit, mv enumerates the number of ideal voltage

sources, and mi counts the number of ideal current sources in our circuit. An ideal

voltage source (think of this like a battery) provides energy to the circuit via a

constant voltage drop across the two leads over a range of output currents. On the

other hand, an ideal current source provides energy to the circuit using a constant

current flow through the two leads over some range of output voltages.

Electrical engineers use ideal voltage and current sources as part of a wide col-

lection of circuit analysis techniques and theorems that, when applied skillfully, can

accurately predict the electric behavior of real circuits used in engineering applica-

tions. Ideal voltage and current sources are mathematical models that do not exist

in the physical world [45, p. 62 - 65]. However, there are numerous practical circuits

that approximate the behavior these ideal circuits for specific intended use cases.

It is worth noting that the first author of this paper teamed up with an engineering

team to build physical circuit devices that transform a 9-volt battery into an ideal

voltage or ideal current source for in-class use so that students can prototype and
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measure physical circuits for comparison against the modeled outputs that they

produce using linear algebraic theory [5].

As a practical matter, a circuit that effects an action does so through resistance

to current, so mr will always be positive, but mv and mi can be 0. The total num-

ber of edges in our digraph model equals the total number of circuit components

and is given by m = (mr +mv +mi). Moreover, we choose a special enumeration

scheme to label each edge. We begin by counting and labeling edges e1, e2, ..., emr

corresponding to the resistors in our circuit. Next, assuming mv ≥ 1, we continue

our count by labeling the edges corresponding to ideal voltage sources as edges

emr+1, ..., emr+mv
. If mi ≥ 1, we conclude by labeling the edges that represent cur-

rent sources as edges emr+mv+1, ..., em. The only condition required in each count

is that we have a bijection between circuit elements and graph edges. Although no

specific subordering is necessary, we recommend counting from left to right and top

to bottom when possible. By enumerating our edges in this way, we draw a useful

partition of the matrices and vectors that model our circuit.

Since we’re creating a directed graph model for our circuit, we assign a direction

to each edge. To do so, we follow three conventions.

1. An edge that models an ideal voltage source points in the direction from the

positive + lead toward the negative – lead of that source.

2. An edge that models an ideal current source points in the same direction as

that current source.

3. An edge corresponding to a resistor can be assigned any direction since the

voltage across and current through each resistor are not predefined.

Readers familiar with engineering conventions might impose the optional constraint

that each node should have at least one edge that points inward and one edge that

points outward, though this is unnecessary in our general framework.

2.3 Developing the digraph

Applying this framework to the example circuit in Figure 1, we see that mr = 11,

mv = 3, mi = 2, and m = 16. This leads to an edge enumeration scheme

in which edges 1 through 11 correspond to the 11 resistors and edges 12 through

14 correspond to the three ideal voltage sources. The remaining edges e15 and e16

correspond to the two ideal current sources. We follow the three conventions listed

above to choose a direction for each edge. This yields a digraph model in Figure 3

below for the circuit provided in Figure 1.
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Figure 3: A digraph model for the example circuit in Figure 1 with ideal

circuit elements replaced by directed edges using the enumeration and direc-

tion conventions described above.

In Figure 3, we see that directed edge e1 = (1, 6) models resistor R1. This edge

initializes at node 1 and terminates at node 6.

3 Step 3: Create all circuit matrices

The third step of the LANA algorithm is to create all circuit matrices including

the incidence matrix Ag ∈ Rm×ng , the node voltage potential vector ug ∈ Rng , the

voltage-drop vector v ∈ Rm and the current vector i ∈ Rm.

3.1 The incidence matrix

Using the digraph model of the circuit from step 2, we bridge the gap between the

visual schematic and the linear-algebraic description of the circuit. Recall that we

consider circuits in which each ideal element is connected to two distinct nodes. We

encode the connectivity between the nodes via the directed edges in the incidence

matrix Ag ∈ Rm×ng . Our entry-by-entry definition of this matrix is given as

ajk =


1 if edge ej leaves node k,

−1 if edge ej enters node k,

0 otherwise,

(2)

for j = 1, 2, ...,m and k = 1, 2, ..., ng. Notice that in the incidence matrix Ag, the

rows correspond to the edges in our digraph while the columns map to the graph’s

nodes. In our entry-by-entry definition (2), each row of Ag has two nonzero entries

and summing all columns together produces the zero vector.

Our definition of incidence matrix Ag departs from a popular convention for

defining incidence matrices for directed graphs. Many authors define incidence

matrices for directed graphs where the nodes of the digraph correspond to rows
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of the matrix and the edges correspond to columns. That common convention

produces the transpose of the matrix we use in this paper. Given that the goal of the

LANA algorithm is to output a system in the equilibrium equation framework (1),

we define our incidence matrix Ag to encode each edge as a row and track each

node via the column numbers of Ag. This approach produces matrices in the exact

form that we desire with the transpose operator in the proper place.

The edge enumeration scheme from step 2 yields a convenient block partition of

this incidence matrix in the form:

Ag =


Arg

Avg

Aig

 (3)

where Arg ∈ Rmr×ng , Avg ∈ Rmv×ng , and Aig ∈ Rmi×ng . Recall that the subscripts

r, v, and i denote rows of our incidence matrix Ag corresponding to groups of resis-

tors, voltage sources, and current sources, respectively. We use this partition later

to analyze each block independently. Applying the entry-by-entry definition (2) to

our example graph in Figure 2, we produce the incidence matrix

Ag =



Arg

Avg

Aig



=



1 0 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0 1

0 −1 1 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 1

0 0 0 0 0 −1 1 0 0

0 0 0 1 0 0 −1 0 0

0 0 0 1 −1 0 0 0 0

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 1 −1

0 0 0 0 −1 0 0 1 0

0 0 −1 0 0 1 0 0 0

0 0 1 −1 0 0 0 0 0

0 0 0 0 1 0 0 −1 0

−1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 −1



.

To finish step 3, we create vectors to describe the circuit’s electronic behavior.

3.2 The node voltage potential vector

Each node in the circuit has a corresponding voltage potential. Because the current

running through each resistor in the circuit is governed by changes in voltage across

each resistor (as described by Ohm’s law), we write the node voltages relative to a

designated ground node or datum node. We can select any of the ng nodes as ground,

which amounts to choosing the location where we attach the negative (black) lead

of a multimeter to measure voltage potentials [47]. To capture this information in

vector form, we create the node voltage potential vector ug ∈ Rng , where entry uk

measures the ideal voltage potential at node k ∈ N . Notice that both matrices Ag
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and ug include a subscript g to indicate that these structures reference the entire

set of nodes, including the user-selected ground node.

3.3 The voltage-drop vector and current vector

From engineering fundamentals, each circuit element can be described by the voltage-

drop across and the current flowing through that element. We capture these char-

acteristics in the voltage and current vectors given by

v =


vr

vv

vi

 and i =


ir

iv

ii

 , (4)

where vr, ir ∈ Rmr , vv, iv ∈ Rmv , and vi, ii ∈ Rmi so that v and i have the same

number of rows as the incidence matrix Ag. These block partitions come from the

edge enumeration scheme in step 2 and match the row dimensions for the blocks

that define the incidence matrix Ag.

4 Step 4: State the entire set of circuit equations

Let’s count the number of unknown variables we have in our system. The vectors

ir and vr both include mr entries so that, combined, these vectors account for 2mr

variables. The vector vi has mi entries while the vector iv has mv entries. Finally,

the vector ug has ng variables. Thus, at this point in our algorithm, our systems

has a total of ℓ = 2 mr + mi + mv + ng unknown variables. We note that the

coefficients in the vv and ii blocks are the known values of the ideal voltage and ideal

current sources, respectively. Thus, the mv +mi variables corresponding to these

two blocks are pre-defined by the structure of the circuit while all other quantities

in the vectors v and i are unknown. In steps 4 – 6 of the LANA algorithm, we

simplify our analysis problem by imposing constraints amongst the ℓ unknowns to

produce a minimal set of n variables from which all other values can be calculated.

For the circuit in Figure 1, this yields a reduction from ℓ = 36 to n = 5 variables.

The fourth step of the LANA algorithm is to state the entire set of circuit equa-

tions which come from Kirchhoff’s current laws (KCLs), branch constitutive rela-

tions (BCRs), and Kirchhoff’s voltage laws (KVLs). By combining these equations

together, we achieve the first of two different reductions processes that eventually

result in our minimal set of unknown circuit variables.

4.1 State the equations from Kirchhoff’s current laws

The first set of circuit equations come from Kirchhoff’s current laws (KCLs) which

states that the sum of all currents running into and out of any node must be zero.
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Since there is one KCL equation for each node in a circuit, we have a total of ng

unique KCL equations that can be written in matrix form as

AT
g i = 0, (5)

where the right-hand side signifies a zero column vector with ng rows. Using the

block version (3) of the incidence matrix Ag and current vector i (4), we rewrite

these KCLs in block form as

AT
rg ir +AT

vg iv +AT
ig ii = 0. (6)

Since ii is a known quantity provided by our DC current sources, we bring this term

on the right-hand side yielding

AT
rg ir +AT

vg iv = −AT
ig ii, (7)

where ir and iv are two unknown vector that we deal with in the next steps below.

4.2 State the equations from the branch constitutive relations

To eliminate explicit reference to the ir vector, we use branch constitutive relations

(BCRs). For resistive networks that contain only resistors along with ideal voltage

and ideal current sources, the BCRs come in the form of Ohm’s law which describes

a linear relationship between the current flowing through and the voltage drop across

a resistor. We capture this information for all resistors in the circuit using a matrix

equation via either the resistance or conductance forms of Ohm’s law given by

vr = R ir or ir = Gvr. (8)

The resistance matrix R ∈ Rmr×mr is a diagonal matrix whose j th diagonal entry is

equal to rj which is the resistance value of the j th resistor, where j = 1, 2, ...,mr.

The conductance matrix G = R−1. To state our equations with a minimal number

of unknown variables, we replace ir in the block KCL equations (7) with the equa-

tion (8) for the conductance form of Ohm’s law involving matrix G. This yields the

partially reduced equation

AT
rgGvr +AT

vg iv = −AT
ig ii. (9)

From here, we further simplify our work by identifying the relationship between the

voltage drop vector vr and node potential vector ug.

4.3 State the equations from Kirchhoff’s voltage laws

To connect the voltage drop and node potential variables, we use Kirchhoff’s voltage

laws (KVLs) in node potential form. These equations state that the voltage drop
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across each two-terminal element is calculated by the difference between the node

voltage potentials at each terminal. Because the topology of our circuit is encoded

in the incidence matrix Ag, we write the KVLs in matrix form as

Ag ug = v. (10)

Just as we write the KCLs in block form (6), we use the step 2 enumeration scheme

and block versions of our circuit matrices to write element-specific KVLs given by

Arg ug = vr, Avg ug = vv, and Aig ug = vi. (11)

These KVLs show that as soon as we find the vector ug, matrix-vector multiplication

produces the values of vr and vi.

4.4 Combine the circuit equations

Using the resistor KVLs (11), we replace the vector vr in the partially reduced

equation (9) with Argug yielding

AT
rgGArgug +AT

vg iv = −AT
ig ii. (12)

In this reduced system, we have two categories of data as shown in Table 1.

Known quantities Unknown quantities

Arg , Avg , Aig , G, vv, ii ug, iv

Table 1: Known and unknown quantities

By combing the KCLs, BCRs, and KVLs together, we decrease the initial ℓ unknown

variables to a smaller set of (ng + mv) unknowns. For the circuit in Figure 1,

this reduces ℓ = 36 to (ng + mv) = 12 variables. We further reduce the

number of variables needed to analyze the circuit by identifying constraints within

the remaining unknown variables.

5 Step 5: Identify ordinary and generalized nodes

Each voltage source in a circuit creates a constraint between the node potential

variables on either side of that source. We borrow engineering notation to track

which nodes are connected to voltage sources and which are not [13, pp. 118 –

119]. An ordinary node is a single node that does not touch a voltage source while a

generalized node is a set of circuit nodes that are linked together by voltage sources.

To identify ordinary and generalized nodes, we use the deactivated circuit heuris-

tic in which we deactivate the power sources. To deactivate a voltage source, we set

the value of that source to zero which implies there is no voltage potential change

across the leads of that voltage source (also known as a short circuit). To deactivate
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a current source, we set the value of that source to zero which implies zero current

can flow between the leads of that element (also known as an open circuit). From

this perspective, deactivating the power sources is equivalent to drawing a deac-

tivated resistor network where we replace the voltage sources with short circuits

and current sources with open circuits. Figure 4 presents the deactivated resistor

network for the circuit from Figure 1.

Figure 4: The deactivated resistor network for the example circuit from

Figure 1. Deactivation involves two steps: (1) Replace each voltage source

with a short circuit which we draw as a line segment by replacing the body

of each voltage source with a straight line between the corresponding nodes.

(2) Replace each current source with an open circuit which is drawn as a gap

between the corresponding nodes by erasing the body of each current source.

When we deactivate the circuit, a set of nodes that are linked via voltage sources

meld together to form a single generalized node. Table 2 below presents these node

classifications for the circuit in Figure 1.

Node Classification Set of node indices Node variables

Ordinary nodes {1}, {2}, {7}, {9} u1, u2, u7, u9

Generalized node 1 {3, 4, 6} u3, u4, u6

Generalized node 2 {5, 8} u5, u8

Table 2: Classification of ordinary and generalized nodes

The deactivated circuit heuristic helps to elucidate key connectivity features

within the circuit. The process of deactivating each voltage source merges two

nodes together thus eliminating mv nodes from the original circuit. In contrast,

deactivating the current sources does not change the number of nodes. What is left

after the deactivation process is a circuit containing only resistors that are linked

together via a reduced set of (ng −mv) nodes.

We say that the deactivated resistor network is connected if we can find a path

of resistors between any two nodes in that circuit. We note that in a connected

network, removing edges correspond to current sources does not disconnect the

digraph model of the circuit, as can be seen in Figure 3 for the circuit in this
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article. The deactivated network in Figure 4 satisfies this definition. In general,

as long as we don’t have two subcircuits that are attached together by one or

more current sources, the deactivated resistor network will always be connected.

This connectivity feature guarantees a unique solution to the matrix equation (1)

generated by the LANA algorithm (contact the first author for a novel proof of

existence and uniqueness).

6 Step 6: Create minimal set of independent node potentials

The LANA algorithm uses linear algebra to reduce the vector ug to a minimal set

of independent node variables from which all other quantities in the circuit can

be calculated. To achieve this reduction, we partition the entries of ug into two

lists. The first list of constrained variables includes one node potential variable for

each of the mv voltage sources and exactly one additional variable for our chosen

ground node. The second list of independent variables are the chosen node voltage

potentials that remain after eliminating the constrained quantities.

To impose the (mv + 1) constraints, we look at two features of our modeling

problem. The first set of constraints is encoded in the element-specific KVLs (11).

The voltage-source KVLs form a linear-systems problem

Avg ug = vv (13)

since the vector vv on the right-hand side has known entries. This voltage source

general linear-systems problem (13) encodes mv restrictions amongst the entries of

ug. The second type of constraint relates to our choice of ground node. To ground

our circuit, we pick a reference node and set one entry of the vector ug to zero.

By eliminating all constraints among the entries of ug, we create a minimal list

u ∈ Rn of independent node variables, where n = (ng −mv − 1).

To reduce ug down to u, we can impose the (mv+1) constraints in either order.

For example, we can first impose the mv voltage-source constraints and then choose

a ground node. Alternatively, we can first choose a ground node and then impose

the mv voltage source constraints. In this exposition, we choose to first impose

the voltage-source constraints and then choose a ground node from the remaining

variables. Either approach produces the same coefficient matrix that arises from

classical nodal analysis [13, pp. 139 – 143]. Let’s explore this reduction in practice.
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6.1 Impose one constraint for each voltage source

The voltage source KVLs (13) come in both matrix and scalar forms. For the

example circuit in Figure 1, we see:

Avg ug = vv ⇔


u6 − u3

u3 − u4

u5 − u8

 =


vv1

vv2

vv3

 =


5.0

2.5

5.0

 (14)

Starting here, we produce a complete solution with (ng−mv) free variables and mv

constraints. No matter what choice we make for the free variables, we can always

produce a complete solution to the voltage-source KVLs (13) in the form

ug = pg + Zvguf (15)

where pg ∈ Rng is a particular solution, uf ∈ Rnf is the vector of free variables [32,

pp. 64 – 70], and the dimension nf = ng−mv represents the number of free variables

from the voltage-source KVL equation (13). The columns of Zvg ∈ Rng×nf form

a basis for null(Avg ) (for details, contact the first author). Below are two different

ways to do this for our example circuit from Figure 1.

(i) Let’s start with the first generalized node. If we choose u3 as the free variable,

then u6 = u3 + vv1 and u4 = u3 − vv2 . For the second generalized node,

if u5 is the chosen free variable, then u8 = u5 − vv3 . The resulting complete

solution to the voltage-source KVLs (13) is

u1

u2

u3

u4

u5

u6

u7

u8

u9


︸ ︷︷ ︸
ug

=



u1

u2

u3

u3 − vv2
u5

u3 + vv1
u7

u5 − vv3
u9


=



0

0

0

−vv2
0

vv1
0

−vv3
0


︸ ︷︷ ︸

pg

+



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1


︸ ︷︷ ︸

Zvg



u1

u2

u3

u5

u7

u9


︸ ︷︷ ︸
uf

(16)

(ii) If we choose u4 as the free variable for generalized node 1, then u3 = u4 + vv2

and u6 = u4 + vv2
+ vv1 . If u8 is the free variable for generalized node 2,

then u5 = u8 + vv3 and the complete solution is

u1

u2

u3

u4

u5

u6

u7

u8

u9


︸ ︷︷ ︸
ug

=



u1

u2

u4 + vv2
u4

u8 + vv3
u4 + vv1 + vv2

u7

u8

u9


=



0

0

vv2
0

vv3
vv1 + vv2

0

0

0


︸ ︷︷ ︸

pg

+



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


︸ ︷︷ ︸

Zvg



u1

u2

u4

u7

v8

u9


︸ ︷︷ ︸
uf
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6.2 Impose a single constraint for the ground node

To impose the final constraint and produce our minimal list of independent node

potentials, we choose a single ground node from the remaining (ng − mv) free

variables. Let’s select option (i) in Section 6.1 with chosen free variables u3 and u5.

We then designate any of the remaining nodes as ground. The moment we choose

the ground node, the corresponding entry of the vector uf is set to zero and shifts

from unknown to known. Since the value of the ground node variable is set to zero,

reference to this variable in the complete solution to the voltage-source KVLs (15)

represents multiplication by zero. But, multiplying a column of a matrix by zero is

equivalent to deleting the column from the resulting linear combination. In other

words, choosing a ground node and setting the corresponding entry of uf to zero is

algebraically equivalent to a dimension reduction realized using multiplication with

a matrix Df0 ∈ Rnf×n. The positive integer

n = nf − 1 = (ng −mv)− 1

represents the minimum number of node voltage potentials needed to completely

analyze the circuit.

We refer to this process of strategically deleting columns (or rows) of a matrix

as deflation. Similarly, we say that a deflation matrix is any matrix used to delete

or deflate the columns (or rows) of another matrix. We use the deflation matrix

Df0 to define

u = DT
f0 uf and Z = Zvg Df0 . (17)

The matrix Df0 is formed by taking the nf × nf identity matrix and deleting the

column corresponding to the chosen ground node as seen below.

A. Assume we ground node 9 and set u9 = 0. We realize this constraint using the

matrix equation


u1

u2

u3

u5

u7


︸ ︷︷ ︸

u

=


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


︸ ︷︷ ︸

DT
f0



u1

u2

u3

u5

u7

u9


︸ ︷︷ ︸
uf

B. Suppose we choose node 3 as ground and set u3 = 0 yielding


u1

u2

u5

u7

u9


︸ ︷︷ ︸

u

=


1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


︸ ︷︷ ︸

DT
f0



u1

u2

u3

u5

u7

u9


︸ ︷︷ ︸
uf
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The completely reduced solution to the voltage-source KVLs is

ug = pg + Zu (18)

where the columns of Z ∈ Rng×n are in the null space of Avg and the vector

u ∈ Rn stores the minimal list of independent variables needed to fully analyze the

circuit. Because our goal is to state our circuit equations in the form of our desired

equilibrium equation framework (1), we find it helpful to define matrices

Ar = ArgZ, AvgZ = 0, and Ai = AigZ. (19)

These matrices encode the reduction process by eliminating all reference to variables

whose values can be calculated from our minimal set of unknown node voltages.

Looking back at our reduced system (12), we substitute in our completely reduced

solution (18) for ug and then multiply the entire equation (12) on the left-hand side

by the matrix ZT . This yields the matrix equation

AT
r GAru = AT

r Gb− f , (20)

where b = −Argpg and f = AT
i ii. This equation is in the desired equilibrium frame-

work (1). Moreover, for almost any circuit that is used in real-world applications,

the stiffness matrix K = AT
r GAr is nonsingular. For a novel proof of this fact,

please contact the first author.

7 Step 7: Solve the equilibrium equation for the circuit

Assume we choose u3 and u5 as the independent node potentials for the two gen-

eralized nodes with node 9 selected as ground. This results in a linear-system of

equations given as

1 0 −1 0 0

0 2 −2 0 0

−1 −2 8 −1 −2

0 0 −1 3 −1

0 0 −2 −1 3


︸ ︷︷ ︸

AT
r GAr



u1

u2

u5

u7

u9


︸ ︷︷ ︸

u

=



6.0

5.0

−20.0

7.5

−5.0


︸ ︷︷ ︸
AT

r Gb−f

Solving this system and substituting the value of the vector u into our reduced

solution to the voltage-source linear-systems problems (18), we produce a model for

the electrical behavior of our example circuit, seen in column 2 of Table 3 below.
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Node LANA model MultiSim model Physical measurement

Variable values (V) values (V) values (V)

u1 −2.6905 −2.6905 −2.680

u2 −0.8095 −0.8095 −0.780

u3 −3.3095 −3.3095 −3.272

u4 −5.8095 −5.8095 −5.730

u5 −0.1190 −0.1191 −0.139

u6 −1.6905 −1.6905 −1.691

u7 −3.8333 −3.8333 −3.766

u8 −4.8810 −4.8810 −4.820

u9 −0.0000 −0.0000 −0.000

Table 3: Model verification for example circuit in Figure 1.

A rich feature of this modeling activity is that students can check their work by using

an electronic circuit simulation program like MultiSim [34] or by prototyping their

circuit and taking measurements with a digital multimeter [5]. In Table 3, columns

2 and 3 align very closely with each other indicating that the LANA algorithm

replicates the results produced by commercially available CAD software programs.

By engaging with this modeling activity, students get to see behind the curtain of

CAD programs and understand some of the math behind that type of software.

Column 4 of Table 3 is noticeably different than both columns 2 and 3 since the

data in column 4 is produced by taking measurements using a digital multimeter

on a physical breadboard circuit.

One major goal of the entire activity is to have students engage in authentic

mathematical modeling including model verification. When we invite students to

compare real-world data with modeled behavior predicted by mathematical algo-

rithms, they have to do lots of deep thinking to decide for themselves if their math

results are sufficiently accurate and valid to describe the physical phenomenon they

are studying. In the process, students develop technical skills that are transferable

to their future academic and career pursuits. It is amazing to see the transformation

in attitude, interest, and excitement as students learn that they don’t have to trust

their teacher but instead can decide for themselves if the linear algebraic techniques

they study in class are useful in applied contexts related to their majors.

Students can use the output to the LANA algorithm to solve very common

problems in circuit analysis like finding the values of any circuit variable. The

moment that the node voltage potential vector ug is known, we can calculate the

value of any other circuit variable. For example, we can use the element-specific

KVLs (11) to find the voltage drop across the resistors and the current sources. We

calculate the current flowing through any resistor in the circuit using the the matrix



21

version of Ohm’s law equation in conductance form (8). The currents running

through the voltage sources can be found using our KCL equation

AT
vg · iv = −AT

rgGArgug −AT
ig ii.

In this equation, the left-hand side includes our desired unknown variables while

the right-hand side is completely determined by our previously stated constants. In

other words, students who study this algorithm can solve a wide variety of problems

from their introductory courses in circuit analysis.

CONCLUSION

The project described in this paper adds to a growing list of resources that engage

linear algebra students in active learning on applied projects related to students’

larger academic and career interests [2], [26], [27], [38]. These activities can be

designed to address the four pillars of inquiry-based mathematics education [28]

which are to deeply engage students in meaningful tasks, to have students collab-

orate, to inquire about and build on student ideas, and to foster equity in STEM

classrooms. The design of this project also fits nicely into a framework for creating

good interdisciplinary problems as suggested by Reinholtz et al. [42], who identify

the following seven qualities as important to the creation good problems: (1) This

project is accessible because it offers a low-floor problem that is easy for students

to start. Students need only have access to a circuit example and can then begin

implementing the steps of the LANA algorithm. (2) Circuit simulation is gener-

alizable to harder tasks that relate to some students’ future academic and career

interests. For evidence supporting this claim, see the list of high-ceiling problems

found in Appendix A. (3) The LANA algorithm also provides multiple solution

paths in which students can compare and contrast their work to develop deeper

knowledge. (4) In analyzing electric circuits using LANA, students get insights

into core linear-algebraic concepts and practices like matrix-matrix multiplication

as well as nonsingular and general linear-systems problems. (5) The mathematical

techniques needed in the algorithm are typical elements in a first linear algebra

course. (6) The entire project is context-rich since each circuit example is related

to real-world engineering problems. (7) Finally, five years of teaching and learning

experience with this project indicate that it is possible to use the LANA algorithm

to create an enjoyable, playful, and interesting environment that motivates students

to work on applied problems. Our experience with project-based, flipped-learning

experiences has been positive, and for our students, powerful. We unreservedly

recommend this type of work as vehicles for teaching and learning.
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APPENDIX A: OPEN-ENDED INQUIRY TASKS

1. Use the LANA algorithm along with the theory you learned in introductory

linear algebra to find the values of the node voltage potentials. Verify your

solutions via some other method. For example, you might:

A. Simulate the circuit using the free online MultiSim software [34].

B. Prototype the circuit [5] and measure with a digital multimeter.

2. Use output vector ug from the LANA algorithm to:

A. Find all entries in the vectors vr, vi, ir, and iv.

B. Find the current vector i and analyze the flow of currents in your cir-

cuit. Then draw a directed graph model for the current flow in the entire

network. What do you notice?
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3. Make sense of and interpret the entries of all matrices used in this model:

A. What do the entries of matrix K = AT
r GAr from equation (20) represent?

B. What do the vectors f = AT
i ii and b = −Argpg represent?

C. Why is the process of melding all nodes within each generalized node

equivalent to multiplying Arg on the right by Zvg?

E. How is the matrix Ar = ArgZ related to the deactivated resistor net-

work? What information about the circuit can you read from Ar? What

information is missing from this matrix?

4. Make sense of each entry in the various matrix equations from a physics or

engineering perspective. How are the entries of these equations related to

knowledge you are building in your other classes? In your response, address

the following equations:

A. KCL equations: AT
g i = 0.

B. BCR equations: ir = Gvr.

C. KVL equations: Ag ug = v.

5. Play with the LANA algorithm. Explore each step slowly and deliberately by

answering the following questions:

A. What happens if you switch the assigned reference directions for the re-

sistors in the circuit? How does this change the matrix K = AT
r GAr from

equation (20)?

B. Change the values of the power sources or resistors or both. Which parts of

the equilibrium equation (20) change and which remain the same? Why?

C. What happens if you switch your choice of free variables? How many

different options do you have for this example circuit? How many options

do you have for a general circuit? What do those options depend on?

D. What happens if you switch your choice of ground node? How many

options do you have?

E. What if you want to ground a node that was not part of your chosen free

variables? What changes do you need to make to do this?

F. How many different nonsingular linear-systems problems can you generate

using the LANA algorithm applied to a single circuit diagram? What are

the relationships between the solutions to your various systems? Can you

get one solution from the other? If so, how? If not, why not?

6. Design an example using circuits from other classes or get creative. Analyze

your circuit using LANA and verify your output using your favorite circuit

simulator or by prototyping your circuit and taking measurements.
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7. How many different ways can you prove that the columns of Zvg form a basis

for null(Avg )? How many unique proofs can you create to show that the matrix

K = AT
r GAr from equation (20) is nonsingular?

8. How can you make the matrix K = AT
r GAr from equation (20) singular? What

features of a circuit would have to be present for the nonsingularity proof in

LANA to fail? Design a circuit that produces a singular matrix K. How can

you adapt your approach if you encounter such a circuit in the wild?

9. Write a MATLAB script file that produces the desired output(s) for any resistor

network with DC voltage and current sources.

10. What happens if you were to eliminate the ground node constraint first and

then eliminate the voltage source constraints? What adaptations can you make

to the LANA algorithm to produce the end result by switching the order in

which you eliminate variables?

11. How can you measure total system energy? What happens when you take the

dot product between v and i? How is that output related to the conservation

of energy? How is this related to Tellegen’s Theorem [13, p. 1052 – 1055]?

12. How might you extend the LANA algorithm to deal with dependent power

sources or to run AC analysis on RCL circuits? How are these extensions related

to the modified nodal analysis [25] algorithm? How is the RCL modeling prob-

lem related to the eigenvalue problem used to model coupled mass-spring sys-

tems [2]? How does this inform your understanding of the electrical-mechanical

correspondence [37, p. 320]?
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