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The Geometry of Special
Orthogonal Transformations

Definition 3.1: Givens Rotation

A Givens rotation is an n× n matrix of the form

Q(i, k, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

...
0 · · · 0 · · · 0 · · · 1


where c = cos(θ) and s = sin(θ). The Givens rotation matrix has a total
of (n+ 2) nonzero entries.

Rotations about the Origin
As discussed in the Givens Rotation Definition 3.1, left multiplication of begin

polygon V by matrix

Q(1, 2, θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
,

rotates each vertex V (:, k) clockwise by angle θ to produce end vertex W (:, k) for
k = 1, 2, 3, 4.

EXAMPLE 3.3.1
Let’s rotate the begin polygon V clockwise by a 60◦ angle. To do so, set θ = π

3 and
define

E =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
=

 1
2

√
3

2

−
√

3
2

1
2



W = E · V =

 1
2

√
3

2

−
√

3
2

1
2

[0 0 1 1
0 1 1 0

]

c© Jeffrey A. Anderson 1 of 8

http://www.appliedlinearalgebra.com


www.appliedlinearalgebra.com Version: 11/09/2021 at 1:13pm

In this case, we will construct the vertex matrix W column-by-column. Using the
column partition version of matrix vector multiplication, notice

W (:, 1) =

 1
2

√
3

2

−
√

3
2

1
2

[00
]

= 0 ·

 1
2

−
√

3
2

+ 0 ·


√

3
2

1
2

 =
[
0
0

]

We find that the vector of second coordinates of the end polygon is calculated

W (:, 2) =

 1
2

√
3

2

−
√

3
2

1
2

[01
]

= 0 ·

 1
2

−
√

3
2

+ 1 ·


√

3
2

1
2

 =


√

3
2

1
2


Next, the third column of W is

W (:, 3) =

 1
2

√
3

2

−
√

3
2

1
2

[11
]

= 1 ·

 1
2

−
√

3
2

+ 1 ·


√

3
2

1
2

 =

 1+
√

3
2

1−
√

3
2


Finally, the last column of our end vertex matrix is given by

W (:, 4) =

 1
2

√
3

2

−
√

3
2

1
2

[10
]

= 1 ·

 1
2

−
√

3
2

+ 0 ·


√

3
2

1
2

 =

 1
2

−
√

3
2


These two vectors together compose the matrix W , and thus we have

W =

0
√

3
2

1+
√

3
2

1
2

0 1
2

1−
√

3
2 −

√
3

2


The end polygon W is, indeed, a 60◦ clockwise rotation of the begin polygon V as
demonstrated in the diagram below.
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To rotation our polygon by an angle of θ counter clockwise around the origin,
we use the Givens rotation

G(1, 2,−θ) =
[

cos(−θ) sin(−θ)
− sin(−θ) cos(−θ)

]
=
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
The final equality results from the property that cosine is an even function with
cos(−θ) = cos(θ) while sine is an odd function with sin(−θ) = − sin(θ). With this
in mind, we see that to rotate vectors counter clockwise, we can multiply by the
transpose of our Given rotation.

Projections onto Special Axis
Next, we will consider orthogonal projections of portions of the begin polygon

onto a selected line through the origin. Suppose we want to project our shapes onto
the span of a given vector y ∈ R2. To construct such a projection, let’s find a way
to decompose any vector v ∈ R2 into the sum of two vectors

v = v̂ + z

where v̂ ∈ Span{y} and z is orthogonal to all vectors in Span{y}, as is demonstrated
in the figure below.

In other words, we want to construct a matrix Py that orthogonally projects
any vector onto the Span{y} such that

v̂ = Pv.

Since v̂ ∈ Span(y), we know that v̂ = αy for some scalar α ∈ R. If we can find a
closed form equation for the α, we can construct our projection Py. To this end,
let’s rewrite our equation using the properties of vector operations with

z = v− v̂.
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By the cosine formula for the dot product, we know that scalar α must be chosen
to satisfy the condition that

0 = y · z

Substituting our updated expression for z into this orthogonality condition yields

0 = y · (v− αy) = y · v− αy · y

The second equality here results from the algebraic properties of the dot product
between vectors. We can solve for the scalar α to find that

α = y · v
y · y = vT y

yT y

This produces two projections. First, we consider the projection of v onto Span{y},
given by

v̂ = αy =
(

vTy
yTy

)
y

We can derive a matrix form of this projection using our algebraic properties of
matrix-vector multiplication

v̂ =
(

vTy
yTy

)
y

= 1
yTy

(
vTy

)
y

= 1
yTy

(
yTv

)
y

= 1
yTy y

(
yTv

)

= 1
yTy

(
y yT

)
v

=
(

y yT

yT y

)
v

This derivation suggests a matrix realization for the projection of any vector onto
the span of y, given by

Py = y yT

yT y

Further, the projection of v onto the line perpendicular to Span{y} is given by

z = v− v̂
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Using the description of these vectors from above, we see

z = v− v̂

= v−
(

y yT

yT y

)
v

= I2 v−
(

y yT

yT y

)
v

=
(
I2 −

y yT

yT y

)
v

This leads to a matrix realization of the projection of any vector onto the line
orthogonal to the Span{y} given by

Py⊥ = I2 −
yyT

yTy

This gives a systematic approach to creating a projection onto any axis we desire.

EXAMPLE 3.3.2
Let’s project the begin polygon onto the first coordinate axis. To do so, set

E =
[
1 0
0 0

]
Then, we can calculate the end polygon

W = E · V =
[
1 0
0 0

] [
0 0 1 1
0 1 1 0

]
Again, we carry out a row-by-row calculation to find

W =
[
0 0 1 1
0 0 0 0

]

EXAMPLE 3.3.3
To project onto the second coordinate axis, set

E =
[
0 0
0 1

]
Then, we can calculate the end polygon

W = E · V =
[
0 0
0 1

] [
0 0 1 1
0 1 1 0

]
Again, we carry out a row-by-row calculation to find

W =
[
0 0 0 0
0 1 1 0

]
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Householder Reflections
See Trefethen p. 70, Datta p. 183 - 187, Golub and Van Loan p. 209,
This brings us to our final important consideration for reflections: How can we

define a reflection about an arbitrary line of reflection defined by the span of vector
y

u =
[
u1
u2

]
This will be known as a Householder reflector and will be used extensively through-
out later sections of this book.

Definition 3.2: Householder Reflection

Let v ∈ Rn be a nonzero vector. A Householder reflection is an n × n
matrix P of the form

P = In + 2
v · v v vT

The vector v is called a Householder vector.

The Householder transformation P is also called a Householder transformation
or a Householder matrix. These matrices are very powerful tools used to execute
numerical calculations on matrices. We will study these in detail during our discus-
sion of matrix-vector multiplication. Householder matrices play an important role
when we discuss the numerical properties of algorithms used to solve linear-systems
and least-squares problems.

EXAMPLE 3.3.4
Let n = 4. Let’s define the Householder matrix P using the vector v =

[
4 1 3 2

]T .
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Then, we see

P = I4 − 2v vT

v · v =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− 2
30


16 4 12 8
4 1 3 2

12 3 9 6
8 2 6 4



Affine Transformations
So far, we have considered transformations that shear, scale, reflect and rotate

the begin polygon V . In all of these cases, the vertex at the origin does not move.
However, in some instances, it is very convenient to be able to translate the entire
begin polygon by a predefined vector x0. To do so, we craft a different map that
sends

w = v + x

This can be achieved by embedding our two dimensional model into a three dimen-
sional space, as follows w1

w2
1

 =

1 0 x1
0 1 x2
0 0 1

v1
v2
1


Then, we create our end polygon by considering only the first two coordinates of
this product.

EXAMPLE 3.3.5
Let’s translate the begin polygon V by shifting all vertices by the vector

x =
[
2
1

]
We encode this map as a matrix-vector product given byw11 w12 w13 w14

w11 w22 w23 w24
1 1 1 1

 =

1 0 x1
0 1 x2
0 0 1

0 0 1 1
0 1 1 0
1 1 1 1


We can calculate the product using the column partition version of matrix vector
multiplication to find the final.

Notice that the accurate use of affine transformations need not preserve the zero
point. In particular, the zero point in the domains space does not necessarily get
mapped to the zero point in the codomain.

c© Jeffrey A. Anderson 7 of 8

http://www.appliedlinearalgebra.com

