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Step-by-step guide to the linear-algebraic nodal analysis (LANA) algorithm
Jeffrey A. Anderson

INPUT:

Suppose we are given a complete description of an electric circuit containing only resistors, dc voltage sources,
and dc current sources. The LANA algorithm proceeds with the steps provided below.

1. Identify and label the entire set of nodes in our circuit.

We begin our work by identifying the nodes in our circuit. To do so, we use the node
identification heuristic in which we erase the element bodies of each ideal circuit element.
The contiguous segments of conductor that remain are known as the nodes of the circuit.
We label the nodes of our circuit using positive integers.

2. Model the circuit as a directed graph.

2A. Track the dimensions of key features in our circuit.

Construct a digraph model G for our circuit by specifically the dimensions of key features.
To do so, we define the following nonnegative integers:

ng = the total number of nodes in the set A (including the ground node),
m, = the number of resistors in the circuit,

m, = the number of dc voltage sources in the circuit,

m; = the number of dc current sources in the circuit,

m = the total number of elements in our circuit.

Each individual circuit element corresponds to a unique edge in our digraph and the set
of edges £ contains exactly m elements, with

m = My + My, +m;.

2B. Orient and enumerate the edges of the digraph.

Replace each circuit element with an edge in our digraph. If an edge models a current
source, we orient this edge in the same direction as the flow of current in that source.
We orient an edge that corresponds to a voltage source from the positive “+” lead to the
negative “-” lead of the associated source. Finally, we assign arbitrary directions to all
edges corresponding to the resistors in our circuit.

We choose a special enumeration scheme for the edges of our digraph. First, we count
and label all edges corresponding to resistors as edges ej,es,...,em,.. Next, we con-
tinue our count by labeling the edges corresponding to voltage sources, yielding edges
€m,+1s -y Em,+m,- Finally, we enumerate our edges corresponding to current sources as
€m,+my+1s--- Em. Dach time we increment our edge index, we follow the same order
determine by the enumeration scheme within each element type given in the original
description of our circuit. For example, edge e; encodes the reference current direction
assigned to resistor i for i = 1,2, ..., m,..

2C. Draw a directed graph model of the circuit.
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3. Create all circuit matrices.

3A. Create the entire incidence matrix

Form the entire incidence matrix A, € R™*"s using the entry-by-entry definition

1 if edge e; leaves node k,
ajr = ¢ —1 if edge e; enters node k,
0 otherwise,

forj=1,2,...,mand k =1,2,...,ny. The rows and columns of this matrix correspond to
the edges and nodes of our digraph, respectively. We create a block-partition description
of our entire incidence matrix A, using our enumeration scheme for our digraph’s edges,
with

where the subblocks of this matrix are given by

Ay, € RMXNa, Ay, € RN and Ay, € RN,

3B. Create the node voltage potential vector.

We create the entire list of node voltage potentials and store these variables in the vector
u, € R"s. This list of node voltage potentials is organized as a column vector. At this
point in the modeling process, we have yet to designate a ground node. Thus, the vector
u, contains all nodes identified in step 1 of this algorithm.

3C. Create the voltage drop vector.

Define the wvoltage-drop vector v € R™ whose individual entries store the voltage drop
across each circuit element, with

v=| v, where v, € R™, v, € R™, and v; € R™.

3D. Create the current vector.

Define the current vector i € R™ whose individual entries store the current running
through each circuit element, with

i=| i, where i, e R™ i,,€ R™, and i; € R™.
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4. State the entire set of circuit equations.

4A. State the entire set of Kirchhoff’s current laws (KCLs).

Finally we state the entire set of KCLs using the equation

i’f,,,
Ao - [AT AT AT ]|~
1;

Since both A4 and i are block partitioned matrices, we restate our complete list of KCL’s
in sublock form as

T, T _ _ATs
Ap i + Ay 1y = —A] i

4B. State the brach constitutive relations (BCRs).

To state the branch constitutive relations for the resistors in our circuit, we use a matrix
version of Ohm’s law given by the equation

v, =R-i, & i.=G-v,

where R € R™r*™r ig a diagonal matrix. Here, we store the appropriate resistance value
in each diagonal entry, yielding scalar equations vy = ry - i for k£ = 1,2, ..., m,. Since
the kth resistor Rk has positive resistance value r > 0, we can also rewrite our Ohm’s
law equations in conductance form, where the conductance matrix G = R~! is a diagonal
and the main diagonal entries are defined by the individual conductances g = 1/74.

4C. State the entire set of Kirchhoff’s voltage laws (KVLs).

We recall that the complete set of circuit equations begins with Kirchhoff’s voltage law
(KVL) in node potential form. In the LANA algorithm, we state this set of equations
using matrix multiplication:

Arug | V.
Agug =v At Avug 1= vy
Aig u, V;

Using the subblock partition of the entire incidence matrix A, and the voltage drop
vector v, we state the resulting element-specific KVLs as follows:

Ap ug = vy, Ay, uy = vy, and A;

ig U, = Vj.

4D. Combine the circuit equations.

Using steps 4A, 4B, and 4C, we can re-write the KCL equations in terms of the vector
u, as follows

AL GA, g + AL i+ = —A] . (1)

with unknown vectors uy and i,.
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5. Identify the ordinary and generalized nodes.

Define a generalized node to be any set of nodes connected by a path of voltage sources. Any
node to which no voltage source is connected is called an ordinary node. To identify ordinary
and generalized nodes, we use the deactivated circuit heuristic in which we deactivate the
power sources by setting the value of each independent source to zero. This is equivalent
to drawing a deactivated resistor network where we replace the voltage sources with short
circuits and current sources with open circuits.

6. Create a minimal set of independent node potentials.

6A. Impose one constraint for each voltage source.

Start with the element-specific KVLs from step 4C and focus on the voltage-source general
linear-systems problem in the form

Ay, uy = vy

Produce a complete solution to the voltage-source KVLs in the form

u, =py+ Zy,uy

where p, € R" is a particular solution, the columns of Z, € R"*"/ form a basis
for Nul(A4,,), the dimension ny = n, —m, represents the number of free variables, and
ur € R™f is the vector of free variables.

6B. Impose a single constraint for the ground node.

Choose a single ground node from the remaining (ny — m,) free variables and shift the
corresponding entry of the vector uy from unknown to known. Realize this dimension
reduction using multiplication with deflation matrix Dy, € R"™/*™ where the vector

u:DTOuf

stores the minimal list of independent variables needed to fully analyze the circuit. The
matrix Dy, is formed by taking the n; x ny identity matrix and deleting the column
corresponding to the chosen ground node as seen below.

6C. Combine the constraints together.
Create the completely reduced solution to the voltage-source KVLs given by
u, = py+ Zu where Z =7y, Dy,. (2)

The matrix Dy, is formed by taking the n; X ny identity matrix and deleting the column
corresponding to the chosen ground node as seen below.
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7. State and solve the equilibrium equation for the circuit
Define matrices
Ar = ArgZ, Ang = 0, and Al = AigZ.
Looking back at the combined circuit equations (1) from step 4D, we replace vector u, with
our completely reduced solution (2) from step 6C. Then we multiply the entire equation (1)
on the left-hand side by the matrix Z7. This yields the matrix equation

ATGAu=ATGb —f, (3)

where b = — A, p, and f = ATi;. Solve this equation using any method. For almost any
circuit that is used in real-world applications, the stiffness matrix K = ATG A, is nonsingular.

OUTPUT:

This algorithm outputs the modeled values for all independent node voltage potentials. We can then
use these node potential to solve for any circuit variable we desire.
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